blob: d031691d8421737e994c4b93d505f9791e11217a (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
Definition le_trans:=O.
Module Test_Read.
Module M.
Read Module Le. (* Reading without importing *)
Check Le.le_trans.
Lemma th0 : le_trans = O.
Reflexivity.
Qed.
End M.
Check Le.le_trans.
Lemma th0 : le_trans = O.
Reflexivity.
Qed.
Import M.
Lemma th1 : le_trans = O.
Reflexivity.
Qed.
End Test_Read.
(****************************************************************)
Definition le_decide := (S O). (* from Arith/Compare *)
Definition min := O. (* from Arith/Min *)
Module Test_Require.
Module M.
Require Compare. (* Imports Min as well *)
Lemma th1 : le_decide = Compare.le_decide.
Reflexivity.
Qed.
Lemma th2 : min = Min.min.
Reflexivity.
Qed.
End M.
(* Checks that Compare and List are loaded *)
Check Compare.le_decide.
Check Min.min.
(* Checks that Compare and List are _not_ imported *)
Lemma th1 : le_decide = (S O).
Reflexivity.
Qed.
Lemma th2 : min = O.
Reflexivity.
Qed.
(* It should still be the case after Import M *)
Import M.
Lemma th3 : le_decide = (S O).
Reflexivity.
Qed.
Lemma th4 : min = O.
Reflexivity.
Qed.
End Test_Require.
(****************************************************************)
Module Test_Import.
Module M.
Import Compare. (* Imports Min as well *)
Lemma th1 : le_decide = Compare.le_decide.
Reflexivity.
Qed.
Lemma th2 : min = Min.min.
Reflexivity.
Qed.
End M.
(* Checks that Compare and List are loaded *)
Check Compare.le_decide.
Check Min.min.
(* Checks that Compare and List are _not_ imported *)
Lemma th1 : le_decide = (S O).
Reflexivity.
Qed.
Lemma th2 : min = O.
Reflexivity.
Qed.
(* It should still be the case after Import M *)
Import M.
Lemma th3 : le_decide = (S O).
Reflexivity.
Qed.
Lemma th4 : min = O.
Reflexivity.
Qed.
End Test_Import.
(************************************************************************)
Module Test_Export.
Module M.
Export Compare. (* Exports Min as well *)
Lemma th1 : le_decide = Compare.le_decide.
Reflexivity.
Qed.
Lemma th2 : min = Min.min.
Reflexivity.
Qed.
End M.
(* Checks that Compare and List are _not_ imported *)
Lemma th1 : le_decide = (S O).
Reflexivity.
Qed.
Lemma th2 : min = O.
Reflexivity.
Qed.
(* After Import M they should be imported as well *)
Import M.
Lemma th3 : le_decide = Compare.le_decide.
Reflexivity.
Qed.
Lemma th4 : min = Min.min.
Reflexivity.
Qed.
End Test_Export.
(************************************************************************)
Module Test_Require_Export.
Definition mult_sym:=(S O). (* from Arith/Mult *)
Definition plus_sym:=O. (* from Arith/Plus *)
Module M.
Require Export Mult. (* Exports Plus as well *)
Lemma th1 : mult_sym = Mult.mult_sym.
Reflexivity.
Qed.
Lemma th2 : plus_sym = Plus.plus_sym.
Reflexivity.
Qed.
End M.
(* Checks that Mult and Plus are _not_ imported *)
Lemma th1 : mult_sym = (S O).
Reflexivity.
Qed.
Lemma th2 : plus_sym = O.
Reflexivity.
Qed.
(* After Import M they should be imported as well *)
Import M.
Lemma th3 : mult_sym = Mult.mult_sym.
Reflexivity.
Qed.
Lemma th4 : plus_sym = Plus.plus_sym.
Reflexivity.
Qed.
End Test_Require_Export.
|