aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success/implicit.v
blob: c6d0a6dd2aef04fc9c296914849c85100c0a0f30 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
(* Testing the behavior of implicit arguments *)

(* Implicit on section variables *)

Set Implicit Arguments.
Unset Strict Implicit.

(* Example submitted by David Nowak *)

Section Spec.
Variable A : Set.
Variable op : forall A : Set, A -> A -> Set.
Infix "#" := op (at level 70).
Check (forall x : A, x # x).

(* Example submitted by Christine *)
Record stack : Type :=
  {type : Set; elt : type; empty : type -> bool; proof : empty elt = true}.

Check
  (forall (type : Set) (elt : type) (empty : type -> bool),
   empty elt = true -> stack).

(* Nested sections and manual implicit arguments *)

Variable op' : forall A : Set, A -> A -> Set.
Variable op'' : forall A : Set, A -> A -> Set.

Section B.

Definition eq1 := fun (A:Type) (x y:A) => x=y.
Definition eq2 := fun (A:Type) (x y:A) => x=y.
Definition eq3 := fun (A:Type) (x y:A) => x=y.

Implicit Arguments op' [].
Global Implicit Arguments op'' [].

Implicit Arguments eq2 [].
Global Implicit Arguments eq3 [].

Check (op 0 0).
Check (op' nat 0 0).
Check (op'' nat 0 0).
Check (eq1 0 0).
Check (eq2 nat 0 0).
Check (eq3 nat 0 0).

End B.

Check (op 0 0).
Check (op' 0 0).
Check (op'' nat 0 0).
Check (eq1 0 0).
Check (eq2 0 0).
Check (eq3 nat 0 0).

End Spec.

Check (eq1 0 0).
Check (eq2 0 0).
Check (eq3 nat 0 0).

(* Test discharge on automatic implicit arguments *)

Check (op' 0 0).

(* Example submitted by Frédéric (interesting in v8 syntax) *)

Parameter f : nat -> nat * nat.
Notation lhs := fst.
Check (fun x => fst (f x)).
Check (fun x => fst (f x)).
Notation rhs := snd.
Check (fun x => snd (f x)).
Check (fun x => @ rhs _ _ (f x)).

(* Implicit arguments in fixpoints and inductive declarations *)

Fixpoint g n := match n with O => true | S n => g n end.

Inductive P n : nat -> Prop := c : P n n.

(* Avoid evars in the computation of implicit arguments (cf r9827) *)

Require Import List.

Fixpoint plus n m {struct n} :=
  match n with
  | 0 => m
  | S p => S (plus p m)
  end.