1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
(* The "?" of cons and eq should be inferred *)
Variable list : Set -> Set.
Variable cons : forall T : Set, T -> list T -> list T.
Check (forall n : list nat, exists l : _, (exists x : _, n = cons _ x l)).
(* Examples provided by Eduardo Gimenez *)
Definition c A (Q : (nat * A -> Prop) -> Prop) P :=
Q (fun p : nat * A => let (i, v) := p in P i v).
(* What does this test ? *)
Require Import List.
Definition list_forall_bool (A : Set) (p : A -> bool)
(l : list A) : bool :=
fold_right (fun a r => if p a then r else false) true l.
(* Checks that solvable ? in the lambda prefix of the definition are harmless*)
Parameter A1 A2 F B C : Set.
Parameter f : F -> A1 -> B.
Definition f1 frm0 a1 : B := f frm0 a1.
(* Checks that solvable ? in the type part of the definition are harmless *)
Definition f2 frm0 a1 : B := f frm0 a1.
(* Checks that sorts that are evars are handled correctly (BZ#705) *)
Require Import List.
Fixpoint build (nl : list nat) :
match nl with
| nil => True
| _ => False
end -> unit :=
match nl return (match nl with
| nil => True
| _ => False
end -> unit) with
| nil => fun _ => tt
| n :: rest =>
match n with
| O => fun _ => tt
| S m => fun a => build rest (False_ind _ a)
end
end.
(* Checks that disjoint contexts are correctly set by restrict_hyp *)
(* Bug de 1999 corrigé en déc 2004 *)
Check
(let p :=
fun (m : nat) f (n : nat) =>
match f m n with
| exist _ a b => exist _ a b
end in
p
:forall x : nat,
(forall y n : nat, {q : nat | y = q * n}) ->
forall n : nat, {q : nat | x = q * n}).
(* Check instantiation of nested evars (BZ#1089) *)
Check (fun f:(forall (v:Type->Type), v (v nat) -> nat) => f _ (Some (Some O))).
(* This used to fail with anomaly (Pp.str "evar was not declared.") in V8.0pl3 *)
Theorem contradiction : forall p, ~ p -> p -> False.
Proof. trivial. Qed.
Hint Resolve contradiction.
Goal False.
eauto.
Abort.
(* This used to fail in V8.1beta because first-order unification was
used before using type information *)
Check (exist _ O (refl_equal 0) : {n:nat|n=0}).
Check (exist _ O I : {n:nat|True}).
(* An example (initially from Marseille/Fairisle) that involves an evar with
different solutions (Input, Output or bool) that may or may not be
considered distinct depending on which kind of conversion is used *)
Section A.
Definition STATE := (nat * bool)%type.
Let Input := bool.
Let Output := bool.
Parameter Out : STATE -> Output.
Check fun (s : STATE) (reg : Input) => reg = Out s.
End A.
(* The return predicate found should be: "in _=U return U" *)
(* (feature already available in V8.0) *)
Definition g (T1 T2:Type) (x:T1) (e:T1=T2) : T2 :=
match e with
| refl_equal => x
end.
(* An example extracted from FMapAVL which (may) test restriction on
evars problems of the form ?n[args1]=?n[args2] with distinct args1
and args2 *)
Set Implicit Arguments.
Parameter t:Set->Set.
Parameter map:forall elt elt' : Set, (elt -> elt') -> t elt -> t elt'.
Parameter avl: forall elt : Set, t elt -> Prop.
Parameter bst: forall elt : Set, t elt -> Prop.
Parameter map_avl: forall (elt elt' : Set) (f : elt -> elt') (m : t elt),
avl m -> avl (map f m).
Parameter map_bst: forall (elt elt' : Set) (f : elt -> elt') (m : t elt),
bst m -> bst (map f m).
Record bbst (elt:Set) : Set :=
Bbst {this :> t elt; is_bst : bst this; is_avl: avl this}.
Definition t' := bbst.
Section B.
Variables elt elt': Set.
Definition map' f (m:t' elt) : t' elt' :=
Bbst (map_bst f m.(is_bst)) (map_avl f m.(is_avl)).
End B.
Unset Implicit Arguments.
(* An example from Lexicographic_Exponentiation that tests the
contraction of reducible fixpoints in type inference *)
Require Import List.
Check (fun (A:Set) (a b x:A) (l:list A)
(H : l ++ cons x nil = cons b (cons a nil)) =>
app_inj_tail l (cons b nil) _ _ H).
(* An example from NMake (simplified), that uses restriction in solve_refl *)
Parameter h:(nat->nat)->(nat->nat).
Fixpoint G p cont {struct p} :=
h (fun n => match p with O => cont | S p => G p cont end n).
(* An example from Bordeaux/Cantor that applies evar restriction
below a binder *)
Require Import Relations.
Parameter lex : forall (A B : Set), (forall (a1 a2:A), {a1=a2}+{a1<>a2})
-> relation A -> relation B -> A * B -> A * B -> Prop.
Check
forall (A B : Set) eq_A_dec o1 o2,
antisymmetric A o1 -> transitive A o1 -> transitive B o2 ->
transitive _ (lex _ _ eq_A_dec o1 o2).
(* Another example from Julien Forest that tests unification below binders *)
Require Import List.
Set Implicit Arguments.
Parameter
merge : forall (A B : Set) (eqA : forall (a1 a2 : A), {a1=a2}+{a1<>a2})
(eqB : forall (b1 b2 : B), {b1=b2}+{b1<>b2})
(partial_res l : list (A*B)), option (list (A*B)).
Axiom merge_correct :
forall (A B : Set) eqA eqB (l1 l2 : list (A*B)),
(forall a2 b2 c2, In (a2,b2) l2 -> In (a2,c2) l2 -> b2 = c2) ->
match merge eqA eqB l1 l2 with _ => True end.
Unset Implicit Arguments.
(* An example from Bordeaux/Additions that tests restriction below binders *)
Section Additions_while.
Variable A : Set.
Variables P Q : A -> Prop.
Variable le : A -> A -> Prop.
Hypothesis Q_dec : forall s : A, P s -> {Q s} + {~ Q s}.
Hypothesis le_step : forall s : A, ~ Q s -> P s -> {s' | P s' /\ le s' s}.
Hypothesis le_wf : well_founded le.
Lemma loopexec : forall s : A, P s -> {s' : A | P s' /\ Q s'}.
refine
(well_founded_induction_type le_wf (fun s => _ -> {s' : A | _ /\ _})
(fun s hr i =>
match Q_dec s i with
| left _ => _
| right _ =>
match le_step s _ _ with
| exist _ s' h' =>
match hr s' _ _ with
| exist _ s'' _ => exist _ s'' _
end
end
end)).
Abort.
End Additions_while.
(* Two examples from G. Melquiond (BZ#1878 and BZ#1884) *)
Parameter F1 G1 : nat -> Prop.
Goal forall x : nat, F1 x -> G1 x.
refine (fun x H => proj2 (_ x H)).
Abort.
Goal forall x : nat, F1 x -> G1 x.
refine (fun x H => proj2 (_ x H) _).
Abort.
(* An example from y-not that was failing in 8.2rc1 *)
Fixpoint filter (A:nat->Set) (l:list (sigT A)) : list (sigT A) :=
match l with
| nil => nil
| (existT _ k v)::l' => (existT _ k v):: (filter A l')
end.
(* BZ#2000: used to raise Out of memory in 8.2 while it should fail by
lack of information on the conclusion of the type of j *)
Goal True.
set (p:=fun j => j (or_intror _ (fun a:True => j (or_introl _ a)))) || idtac.
Abort.
(* Remark: the following example stopped succeeding at some time in
the development of 8.2 but it works again (this was because 8.2
algorithm was more general and did not exclude a solution that it
should have excluded for typing reason; handling of types and
backtracking is still to be done) *)
Section S.
Variables A B : nat -> Prop.
Goal forall x : nat, A x -> B x.
refine (fun x H => proj2 (_ x H) _).
Abort.
End S.
(* Check that constraints are taken into account by tactics that instantiate *)
Lemma inj : forall n m, S n = S m -> n = m.
intros n m H.
eapply f_equal with (* should fail because ill-typed *)
(f := fun n =>
match n return match n with S _ => nat | _ => unit end with
| S n => n
| _ => tt
end) in H
|| injection H.
Abort.
(* A legitimate simple eapply that was failing in coq <= 8.3.
Cf. in Unification.w_merge the addition of an extra pose_all_metas_as_evars
on 30/9/2010
*)
Lemma simple_eapply_was_failing :
(forall f:nat->nat, exists g, f = g) -> True.
Proof.
assert (modusponens : forall P Q, P -> (P->Q) -> Q) by auto.
intros.
eapply modusponens.
simple eapply H.
(* error message with V8.3 :
Impossible to unify "?18" with "fun g : nat -> nat => ?6 = g". *)
Abort.
(* Regression test *)
Definition fo : option nat -> nat := option_rec _ (fun a => 0) 0.
(* This example revealed an incorrect evar restriction at some time
around October 2011 *)
Goal forall (A:Type) (a:A) (P:forall A, A -> Prop), (P A a) /\ (P A a).
intros.
refine ((fun H => conj (proj1 H) (proj2 H)) _).
Abort.
(* The argument of e below failed to be inferred from r14219 (Oct 2011) to *)
(* r14753 after the restrictions made on detecting Miller's pattern in the *)
(* presence of alias, only the second-order unification procedure was *)
(* able to solve this problem but it was deactivated for 8.4 in r14219 *)
Definition k0
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, n = a) o :=
match o with (* note: match introduces an alias! *)
| Some a => e _ (j a)
| None => O
end.
Definition k1
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, n = a) a (b:=a) := e _ (j a).
Definition k2
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, n = a) a (b:=a) := e _ (j b).
(* Other examples about aliases involved in pattern unification *)
Definition k3
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, let a' := a in n = a') a (b:=a) := e _ (j b).
Definition k4
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, let a' := S a in n = a') a (b:=a) := e _ (j b).
Definition k5
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, let a' := S a in exists n : nat, n = a') a (b:=a) := e _ (j b).
Definition k6
(e:forall P : nat -> Prop, (exists n : nat, P n) -> nat)
(j : forall a, exists n : nat, let n' := S n in n' = a) a (b:=a) := e _ (j b).
Definition k7
(e:forall P : nat -> Prop, (exists n : nat, let n' := n in P n') -> nat)
(j : forall a, exists n : nat, n = a) a (b:=a) := e _ (j b).
(* An example that uses materialize_evar under binders *)
(* Extracted from bigop.v in the mathematical components library *)
Section Bigop.
Variable bigop : forall R I: Type,
R -> (R -> R -> R) -> list I -> (I->Prop) -> (I -> R) -> R.
Hypothesis eq_bigr :
forall (R : Type) (idx : R) (op : R -> R -> R)
(I : Type) (r : list I) (P : I -> Prop) (F1 F2 : I -> R),
(forall i : I, P i -> F1 i = F2 i) ->
bigop R I idx op r (fun i : I => P i) (fun i : I => F1 i) = idx.
Hypothesis big_tnth :
forall (R : Type) (idx : R) (op : R -> R -> R)
(I : Type) (r : list I) (P : I -> Prop) (F : I -> R),
bigop R I idx op r (fun i : I => P i) (fun i : I => F i) = idx.
Hypothesis big_tnth_with_letin :
forall (R : Type) (idx : R) (op : R -> R -> R)
(I : Type) (r : list I) (P : I -> Prop) (F : I -> R),
bigop R I idx op r (fun i : I => let i:=i in P i) (fun i : I => F i) = idx.
Variable R : Type.
Variable idx : R.
Variable op : R -> R -> R.
Variable I : Type.
Variable J : Type.
Variable rI : list I.
Variable rJ : list J.
Variable xQ : J -> Prop.
Variable P : I -> Prop.
Variable Q : I -> J -> Prop.
Variable F : I -> J -> R.
(* Check unification under binders *)
Check (eq_bigr _ _ _ _ _ _ _ _ (fun _ _ => big_tnth _ _ _ _ rI _ _))
: (bigop R J idx op rJ
(fun j : J => let k:=j in xQ k)
(fun j : J => let k:=j in
bigop R I idx
op rI
(fun i : I => P i /\ Q i k) (fun i : I => let k:=j in F i k))) = idx.
(* Check also with let-in *)
Check (eq_bigr _ _ _ _ _ _ _ _ (fun _ _ => big_tnth_with_letin _ _ _ _ rI _ _))
: (bigop R J idx op rJ
(fun j : J => let k:=j in xQ k)
(fun j : J => let k:=j in
bigop R I idx
op rI
(fun i : I => P i /\ Q i k) (fun i : I => let k:=j in F i k))) = idx.
End Bigop.
(* Check the use of (at least) an heuristic to solve problems of the form
"?x[t] = ?y" where ?y occurs in t without easily knowing if ?y can
eventually be erased in t *)
Section evar_evar_occur.
Variable id : nat -> nat.
Variable f : forall x, id x = 0 -> id x = 0 -> x = 1 /\ x = 2.
Variable g : forall y, id y = 0 /\ id y = 0.
(* Still evars in the resulting type, but constraints should be solved *)
Check match g _ with conj a b => f _ a b end.
End evar_evar_occur.
(* Eta expansion (BZ#2936) *)
Record iffT (X Y:Type) : Type := mkIff { iffLR : X->Y; iffRL : Y->X }.
Record tri (R:Type->Type->Type) (S:Type->Type->Type) (T:Type->Type->Type) := mkTri {
tri0 : forall a b c, R a b -> S a c -> T b c
}.
Implicit Arguments mkTri [R S T].
Definition tri_iffT : tri iffT iffT iffT :=
(mkTri
(fun X0 X1 X2 E01 E02 =>
(mkIff _ _ (fun x1 => iffLR _ _ E02 (iffRL _ _ E01 x1))
(fun x2 => iffLR _ _ E01 (iffRL _ _ E02 x2))))).
(* Check that local defs names are preserved if possible during unification *)
Goal forall x (x':=x) (f:forall y, y=y:>nat -> Prop), f _ (eq_refl x').
intros.
unfold x' at 2. (* A way to check that there are indeed 2 occurrences of x' *)
Abort.
(* A simple example we would like not to fail (it used to fail because of
not strict enough evar restriction) *)
Check match Some _ with None => _ | _ => _ end.
(* Used to fail for a couple of days in Nov 2014 *)
Axiom test : forall P1 P2, P1 = P2 -> P1 -> P2.
(* Check use of candidates *)
Import EqNotations.
Definition test2 {A B:Type} {H:A=B} (a:A) : B := rew H in a.
(* Check that pre-existing evars are not counted as newly undefined in "set" *)
(* Reported by Théo *)
Goal exists n : nat, n = n -> True.
eexists.
set (H := _ = _).
Abort.
|