aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success/eqdecide.v
blob: 055434df01e53ebb78f2939947a7674a609d0cd1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

Inductive T : Set :=
  | A : T
  | B : T -> T.

Lemma lem1 : forall x y : T, {x = y} + {x <> y}.
 decide equality.
Qed.

Lemma lem1' : forall x y : T, x = y \/ x <> y.
 decide equality.
Qed.

Lemma lem1'' : forall x y : T, {x <> y} + {x = y}.
 decide equality.
Qed.

Lemma lem1''' : forall x y : T, x <> y \/ x = y.
 decide equality.
Qed.

Lemma lem2 : forall x y : T, {x = y} + {x <> y}.
intros x y.
 decide equality.
Qed.

Lemma lem4 : forall x y : T, {x = y} + {x <> y}.
intros x y.
 compare x y; auto.
Qed.