blob: f826df9a42d78f4fc91e8a6196dc7d5d38a812f7 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
Inductive T : Set := A: T | B :T->T.
Lemma lem1 : (x,y:T){x=y}+{~x=y}.
Decide Equality.
Qed.
Lemma lem2 : (x,y:T){x=y}+{~x=y}.
Intros x y.
Decide Equality x y.
Qed.
Lemma lem3 : (x,y:T){x=y}+{~x=y}.
Intros x y.
Decide Equality y x.
Qed.
Lemma lem4 : (x,y:T){x=y}+{~x=y}.
Intros x y.
Compare x y; Auto.
Qed.
|