blob: 9b3fb3c5c747755d894c45a21850cd0aba52a0f5 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
Inductive T : Set :=
| A : T
| B : T -> T.
Lemma lem1 : forall x y : T, {x = y} + {x <> y}.
decide equality.
Qed.
Lemma lem1' : forall x y : T, x = y \/ x <> y.
decide equality.
Qed.
Lemma lem1'' : forall x y : T, {x <> y} + {x = y}.
decide equality.
Qed.
Lemma lem1''' : forall x y : T, x <> y \/ x = y.
decide equality.
Qed.
Lemma lem2 : forall x y : T, {x = y} + {x <> y}.
intros x y.
decide equality.
Qed.
Lemma lem4 : forall x y : T, {x = y} + {x <> y}.
intros x y.
compare x y; auto.
Qed.
|