aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success/eauto.v
blob: 837d9d4c17715dfeeb24779d33c50dbcc7ad73f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)
Require Import List.

Class A (A : Type).
  Instance an: A nat.

Class B (A : Type) (a : A).
Instance bn0: B nat 0.
Instance bn1: B nat 1.

Goal A nat.
Proof.
  fulleauto.
Qed.

Goal B nat 2.
Proof.
  Fail fulleauto.
Abort.

Goal exists T : Type, A T.
Proof.
  eexists. fulleauto.
Defined.

Hint Extern 0 (_ /\ _) => constructor : typeclass_instances.

Goal exists (T : Type) (t : T), A T /\ B T t.
Proof.
  eexists. eexists. fulleauto.
Defined.

Instance ab: A bool. (* Backtrack on A instance *)
Goal exists (T : Type) (t : T), A T /\ B T t.
Proof.
  eexists. eexists. fulleauto.
Defined.

Class C {T} `(a : A T) (t : T). 
Require Import Classes.Init.
Hint Extern 0 { x : ?A & _ } =>
  unshelve class_apply @existT : typeclass_instances.

Set Typeclasses Debug.
Instance can: C an 0.
(* Backtrack on instance implementation *)
Goal exists (T : Type) (t : T), { x : A T & C x t }.
Proof.
  eexists. eexists. fulleauto.
Defined.

Class D T `(a: A T).
  Instance: D _ an.
Goal exists (T : Type), { x : A T & D T x }.
Proof.
  eexists. fulleauto.
Defined.
  

Parameter in_list : list (nat * nat) -> nat -> Prop.
Definition not_in_list (l : list (nat * nat)) (n : nat) : Prop :=
  ~ in_list l n.

(* Hints Unfold not_in_list. *)

Axiom
  lem1 :
    forall (l1 l2 : list (nat * nat)) (n : nat),
    not_in_list (l1 ++ l2) n -> not_in_list l1 n.

Axiom
  lem2 :
    forall (l1 l2 : list (nat * nat)) (n : nat),
    not_in_list (l1 ++ l2) n -> not_in_list l2 n.

Axiom
  lem3 :
    forall (l : list (nat * nat)) (n p q : nat),
    not_in_list ((p, q) :: l) n -> not_in_list l n.

Axiom
  lem4 :
    forall (l1 l2 : list (nat * nat)) (n : nat),
    not_in_list l1 n -> not_in_list l2 n -> not_in_list (l1 ++ l2) n.

Hint Resolve lem1 lem2 lem3 lem4: essai.

Goal
forall (l : list (nat * nat)) (n p q : nat),
not_in_list ((p, q) :: l) n -> not_in_list l n.
  intros.
  eauto with essai.
Qed.

(* Example from Nicolas Magaud on coq-club - Jul 2000 *)

Definition Nat : Set := nat.
Parameter S' : Nat -> Nat.
Parameter plus' : Nat -> Nat -> Nat.

Lemma simpl_plus_l_rr1 :
 (forall n0 : Nat,
  (forall m p : Nat, plus' n0 m = plus' n0 p -> m = p) ->
  forall m p : Nat, S' (plus' n0 m) = S' (plus' n0 p) -> m = p) ->
 forall n : Nat,
 (forall m p : Nat, plus' n m = plus' n p -> m = p) ->
 forall m p : Nat, S' (plus' n m) = S' (plus' n p) -> m = p.
  intros.
  apply H0. apply f_equal_nat.
  Time info_eauto.
  Undo.
  Unset Typeclasses Debug.
  Set Typeclasses Iterative Deepening.
  Time fulleauto 5. Show Proof.
  Undo.
  eauto. (* does EApply H *)
Qed.