1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
|
(* Submitted by Robert Schneck *)
Parameters A B C D : Prop.
Axiom X : A -> B -> C /\ D.
Lemma foo : A -> B -> C.
Proof.
intros.
destruct X. (* Should find axiom X and should handle arguments of X *)
assumption.
assumption.
assumption.
Qed.
(* Simplification of bug 711 *)
Parameter f : true = false.
Goal let p := f in True.
intro p.
set (b := true) in *.
(* Check that it doesn't fail with an anomaly *)
(* Ultimately, adapt destruct to make it succeeding *)
try destruct b.
Abort.
(* Used to fail with error "n is used in conclusion" before revision 9447 *)
Goal forall n, n = S n.
induction S.
Abort.
(* Check that elimination with remaining evars do not raise an bad
error message *)
Theorem Refl : forall P, P <-> P. tauto. Qed.
Goal True.
case Refl || ecase Refl.
Abort.
(* Submitted by B. Baydemir (bug #1882) *)
Require Import List.
Definition alist R := list (nat * R)%type.
Section Properties.
Variable A : Type.
Variable a : A.
Variable E : alist A.
Lemma silly : E = E.
Proof.
clear. induction E. (* this fails. *)
Abort.
End Properties.
(* This used not to work before revision 11944 *)
Goal forall P:(forall n, 0=n -> Prop), forall H: 0=0, P 0 H.
destruct H.
Abort.
(* The calls to "destruct" below did not work before revision 12356 *)
Variable A0:Type.
Variable P:A0->Type.
Require Import JMeq.
Goal forall a b (p:P a) (q:P b),
forall H:a = b, eq_rect a P p b H = q -> JMeq (existT _ a p) (existT _ b q).
intros.
destruct H.
destruct H0.
reflexivity.
Qed.
(* These did not work before 8.4 *)
Goal (exists x, x=0) -> True.
destruct 1 as (_,_); exact I.
Abort.
Goal (exists x, x=0 /\ True) -> True.
destruct 1 as (_,(_,H)); exact H.
Abort.
Goal (exists x, x=0 /\ True) -> True.
destruct 1 as (_,(_,x)); exact x.
Abort.
Goal let T:=nat in forall (x:nat) (g:T -> nat), g x = 0.
intros.
destruct (g _). (* This was failing in at least r14571 *)
Abort.
(* Check that subterm selection does not solve existing evars *)
Goal exists x, S x = S 0.
eexists.
destruct (S _). (* Incompatible occurrences but takes the first one since Oct 2014 *)
change (0 = S 0).
Abort.
Goal exists x, S 0 = S x.
eexists.
destruct (S _). (* Incompatible occurrences but takes the first one since Oct 2014 *)
change (0 = S ?x).
Abort.
Goal exists n p:nat, (S n,S n) = (S p,S p) /\ p = n.
do 2 eexists.
destruct (_, S _). (* Was unifying at some time in trunk, now takes the first occurrence *)
change ((n, n0) = (S ?p, S ?p) /\ ?p = ?n0).
Abort.
(* An example with incompatible but convertible occurrences *)
Goal id (id 0) = 0.
Fail destruct (id _) at 1 2.
Abort.
(* Avoid unnatural selection of a subterm larger than expected *)
Goal let g := fun x:nat => x in g (S 0) = 0.
intro.
destruct S.
(* Check that it is not the larger subterm "g (S 0)" which is
selected, as it was the case in 8.4 *)
unfold g at 1.
Abort.
(* Some tricky examples convenient to support *)
Goal forall x, nat_rect (fun _ => nat) O (fun x y => S x) x = nat_rect (fun _ => nat) O (fun x y => S x) x.
intros.
destruct (nat_rect _ _ _ _).
Abort.
(* Check compatibility in selecting what is open or "shelved" *)
Goal (forall x, x=0 -> nat) -> True.
intros.
Fail destruct H.
edestruct H.
- reflexivity.
- exact Logic.I.
- exact Logic.I.
Qed.
(* Check an example which was working with case/elim in 8.4 but not with
destruct/induction *)
Goal forall x, (True -> x = 0) -> 0=0.
intros.
destruct H.
- trivial.
- apply (eq_refl x).
Qed.
(* Check an example which was working with case/elim in 8.4 but not with
destruct/induction (not the different order between induction/destruct) *)
Goal forall x, (True -> x = 0) -> 0=0.
intros.
induction H.
- apply (eq_refl x).
- trivial.
Qed.
(* This test assumes that destruct/induction on non-dependent hypotheses behave the same
when using holes or not
Goal forall x, (True -> x = 0) -> 0=0.
intros.
destruct (H _).
- apply I.
- apply (eq_refl x).
Qed.
*)
(* Check destruct vs edestruct *)
Goal forall x, (forall y, y = 0 -> x = 0) -> 0=0.
intros.
Fail destruct H.
edestruct H.
- trivial.
- apply (eq_refl x).
Qed.
Goal forall x, (forall y, y = 0 -> x = 0) -> 0=0.
intros.
Fail destruct (H _ _).
(* Now a test which assumes that edestruct on non-dependent
hypotheses accept unresolved subterms in the induction argument.
edestruct (H _ _).
- trivial.
- apply (eq_refl x).
Qed.
*)
Abort.
(* Test selection when not in an inductive type *)
Parameter T:Type.
Axiom elim: forall P, T -> P.
Goal forall a:T, a = a.
induction a using elim.
Qed.
Goal forall a:nat -> T, a 0 = a 1.
intro a.
induction (a 0) using elim.
Qed.
(* From Oct 2014, a subterm is found, as if without "using"; in 8.4,
it did not find a subterm *)
Goal forall a:nat -> T, a 0 = a 1.
intro a.
induction a using elim.
Qed.
Goal forall a:nat -> T, forall b, a 0 = b.
intros a b.
induction a using elim.
Qed.
(* From Oct 2014, first subterm is found; in 8.4, it failed because it
found "a 0" and wanted to clear a *)
Goal forall a:nat -> nat, a 0 = a 1.
intro a.
destruct a.
change (0 = a 1).
Abort.
(* This example of a variable not fully applied in the goal was working in 8.4*)
Goal forall H : 0<>0, H = H.
destruct H.
reflexivity.
Qed.
(* Check that variables not fully applied in the goal are not erased
(this example was failing in 8.4 because of a forbidden "clear H" in
the code of "destruct H" *)
Goal forall H : True -> True, H = H.
destruct H.
- exact I.
- reflexivity.
Qed.
(* Check destruct on idents with maximal implicit arguments - which did
not work in 8.4 *)
Parameter g : forall {n:nat}, n=n -> nat.
Goal g (eq_refl 0) = 0.
destruct g.
Abort.
(* This one was working in 8.4 (because of full conv on closed arguments) *)
Class E.
Instance a:E.
Goal forall h : E -> nat -> nat, h (id a) 0 = h a 0.
intros.
destruct (h _).
change (0=0).
Abort.
(* This one was not working in 8.4 because an occurrence of f was
remaining, blocking the "clear f" *)
Goal forall h : E -> nat -> nat, h a 0 = h a 1.
intros.
destruct h.
Abort.
(* This was not working in 8.4 *)
Section S1.
Variables x y : Type.
Variable H : x = y.
Goal True.
destruct H. (* Was not working in 8.4 *)
(* Now check that H statement has itself be subject of the rewriting *)
change (x=x) in H.
Abort.
End S1.
(* This was not working in 8.4 because of untracked dependencies *)
Goal forall y, forall h:forall x, x = y, h 0 = h 0.
intros.
destruct (h 0).
Abort.
(* Check absence of useless local definitions *)
Section S2.
Variable H : 1=1.
Goal 0=1.
destruct H.
Fail clear n. (* Check that there is no n as it was in Coq <= 8.4 *)
Abort.
End S2.
Goal forall x:nat, x=x->x=1.
intros x H.
destruct H.
Fail clear n. (* Check that there is no n as it was in Coq <= 8.4 *)
Fail clear H. (* Check that H has been removed *)
Abort.
(* Check support for induction arguments which do not expose an inductive
type rightaway *)
Definition U := nat -> nat.
Definition S' := S : U.
Goal forall n, S' n = 0.
intro.
destruct S'.
Abort.
(* This was working by chance in 8.4 thanks to "accidental" use of select
subterms _syntactically_ equal to the first matching one.
Parameter f2:bool -> unit.
Parameter r2:f2 true=f2 true.
Goal forall (P: forall b, b=b -> Prop), f2 (id true) = tt -> P (f2 true) r2.
intros.
destruct f2.
Abort.
*)
(* This did not work in 8.4, because of a clear failing *)
Inductive IND : forall x y:nat, x=y -> Type := CONSTR : IND 0 0 eq_refl.
Goal forall x y e (h:x=y -> y=x) (z:IND y x (h e)), e = e /\ z = z.
intros.
destruct z.
Abort.
(* The two following examples show how the variables occurring in the
term being destruct affects the generalization; don't know if these
behaviors are "good". None of them was working in 8.4. *)
Goal forall x y e (t:x=y) (z:x=y -> IND y x e), e = e.
intros.
destruct (z t).
change (0=0) in t. (* Generalization made *)
Abort.
Goal forall x y e (t:x=y) (z:x=y -> IND y x e), e = e /\ z t = z t.
intros.
destruct (z t).
change (0=0) in t. (* Generalization made *)
Abort.
(* Check that destruct on a scheme with a functional argument works *)
Goal (forall P:Prop, (nat->nat) -> P) -> forall h:nat->nat, h 0 = h 0.
intros.
destruct h using H.
Qed.
Goal (forall P:Prop, (nat->nat) -> P) -> forall h:nat->nat->nat, h 0 0 = h 1 0.
intros.
induction (h 1) using H.
Qed.
(* Check blocking generalization is not too strong (failed at some time) *)
Goal (E -> 0=1) -> 1=0 -> True.
intros.
destruct (H _).
change (0=0) in H0. (* Check generalization on H0 was made *)
Abort.
(* Check absence of anomaly (failed at some time) *)
Goal forall A (a:A) (P Q:A->Prop), (forall a, P a -> Q a) -> True.
intros.
Fail destruct H.
Abort.
(* Check keep option (bug #3791) *)
Goal forall b:bool, True.
intro b.
destruct !b.
clear b. (* b has to be here *)
Abort.
(* Check clearing of names *)
Inductive IND2 : nat -> Prop := CONSTR2 : forall y, y = y -> IND2 y.
Goal forall x y z:nat, y = z -> x = y -> y = x -> x = y.
intros * Heq H Heq'.
destruct H.
Abort.
Goal 2=1 -> 1=0.
intro H. destruct H.
Fail (match goal with n:nat |- _ => unfold n end). (* Check that no let-in remains *)
Abort.
(* Check clearing of names *)
Inductive eqnat (x : nat) : nat -> Prop :=
reflnat : forall y, x = y -> eqnat x y.
Goal forall x z:nat, x = z -> eqnat x z -> True.
intros * H1 H.
destruct H.
Fail clear z. (* Should not be here *)
Abort.
(* Check ok in the presence of an equation *)
Goal forall b:bool, b = b.
intros.
destruct b eqn:H.
(* Check natural instantiation behavior when the goal has already an evar *)
Goal exists x, S x = x.
eexists.
destruct (S _).
change (0 = ?x).
Abort.
|