aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success/decl_mode.v
blob: fede31a8ad4b5cc61d7aea029c753e8c6016b6c1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
(* \sqrt 2 is irrationnal, (c) 2006 Pierre Corbineau *)

Set Firstorder Depth 1.
Require Import ArithRing Wf_nat Peano_dec Div2 Even Lt.

Lemma double_div2: forall n, div2 (double n) = n.
proof.
  assume n:nat.
  per induction on n.
    suppose it is 0.
     suffices (0=0) to show thesis. 
     thus thesis.
    suppose it is (S m) and Hrec:thesis for m.
      have (div2 (double (S m))= div2 (S (S (double m)))). 
           ~= (S (div2 (double m))).
      thus ~= (S m) by Hrec.
  end induction.
end proof.
Show Script.
Qed.

Lemma double_inv : forall n m, double n = double m -> n = m .
proof.
  let n, m be such that H:(double n = double m).
have (n = div2 (double n)) by double_div2,H.
       ~= (div2 (double m)) by H.
  thus ~= m by double_div2.
end proof.
Qed.

Lemma double_mult_l : forall n m, (double (n * m)=n * double m).
proof.
  assume n:nat and m:nat.
  have (double (n * m) = n*m + n * m).
       ~= (n * (m+m)) by * using ring.
  thus ~= (n * double m).
end proof.
Qed.

Lemma double_mult_r : forall n m, (double (n * m)=double n * m).
proof.
  assume n:nat and m:nat.
  have (double (n * m) = n*m + n * m).
       ~= ((n + n) * m) by * using ring.
  thus ~= (double n * m).
end proof.
Qed.

Lemma even_is_even_times_even: forall n, even (n*n) -> even n.
proof.
  let n be such that H:(even (n*n)).
  per cases of (even n \/ odd n) by even_or_odd.
    suppose (odd n).
      hence thesis by H,even_mult_inv_r.
  end cases.
end proof.
Qed.

Lemma main_thm_aux: forall n,even n -> 
double (double (div2 n *div2 n))=n*n.
proof.
  given n such that H:(even n).
 *** have (double (double (div2 n * div2 n)) 
        = double (div2 n) * double (div2 n)) 
        by double_mult_l,double_mult_r.
  thus ~= (n*n) by H,even_double.
end proof.
Qed.

Require Omega.

Lemma even_double_n: (forall m, even (double m)).
proof.
  assume m:nat.
  per induction on m.
    suppose it is 0.
      thus thesis.
    suppose it is (S mm) and thesis for mm. 
      then H:(even (S (S (mm+mm)))).
      have (S (S (mm + mm)) = S mm + S mm)  using omega.
      hence (even (S mm +S mm)) by H.
  end induction.
end proof.
Qed.
 
Theorem main_theorem: forall n p, n*n=double (p*p) -> p=0.
proof.
  assume n0:nat.
  define P n as (forall p, n*n=double (p*p) -> p=0).
  claim rec_step: (forall n, (forall m,m<n-> P m) -> P n).
    let n be such that H:(forall m : nat, m < n -> P m) and p:nat .
    per cases of ({n=0}+{n<>0}) by eq_nat_dec.
      suppose H1:(n=0).
        per cases on p.
          suppose it is (S p').
            assume (n * n = double (S p' * S p')).
              =~ 0 by H1,mult_n_O.
              ~= (S (  p' + p' * S p' + S p'* S p')) 
                by plus_n_Sm.
            hence thesis .
          suppose it is 0.
            thus thesis.
        end cases.
      suppose H1:(n<>0).
        assume H0:(n*n=double (p*p)).
        have (even (double (p*p))) by even_double_n .
        then (even (n*n)) by H0.
        then H2:(even n) by even_is_even_times_even.
        then (double (double (div2 n *div2 n))=n*n) 
          by main_thm_aux.
          ~= (double (p*p)) by H0.
        then H':(double (div2 n *div2 n)= p*p) by double_inv. 
        have (even (double (div2 n *div2 n))) by even_double_n.
        then (even (p*p)) by even_double_n,H'.
        then H3:(even p) by even_is_even_times_even.
        have (double(double (div2 n * div2 n)) = n*n) 
          by H2,main_thm_aux.
          ~= (double (p*p)) by H0.
          ~= (double(double (double (div2 p * div2 p)))) 
            by H3,main_thm_aux.
        then H'':(div2 n * div2 n = double (div2 p * div2 p)) 
          by double_inv.
        then (div2 n < n) by lt_div2,neq_O_lt,H1.
        then H4:(div2 p=0) by  (H (div2 n)),H''.
        then (double (div2 p) = double 0).
             =~ p by even_double,H3.
        thus ~= 0.
    end cases.
  end claim.
  hence thesis by (lt_wf_ind n0 P).
end proof.
Qed.

Require Import Reals Field.
(*Coercion INR: nat >->R.
Coercion IZR: Z >->R.*)

Open Scope R_scope.

Lemma square_abs_square: 
  forall p,(INR (Zabs_nat p) * INR (Zabs_nat p)) = (IZR p * IZR p). 
proof.
  assume p:Z.
  per cases on p.
    suppose it is (0%Z).
      thus thesis.
    suppose it is (Zpos z).
      thus thesis.
    suppose it is (Zneg z).
      have ((INR (Zabs_nat (Zneg z)) * INR (Zabs_nat (Zneg z))) = 
      (IZR (Zpos z) * IZR (Zpos z))).
           ~= ((- IZR (Zpos z)) * (- IZR (Zpos z))).
      thus ~= (IZR (Zneg z) * IZR (Zneg z)).
  end cases.
end proof.
Qed.

Definition irrational (x:R):Prop :=
  forall (p:Z) (q:nat),q<>0%nat -> x<> (IZR p/INR q).

Theorem irrationnal_sqrt_2: irrational (sqrt (INR 2%nat)).
proof.
  let p:Z,q:nat be such that H:(q<>0%nat) 
                         and H0:(sqrt (INR 2%nat)=(IZR p/INR q)).
  have H_in_R:(INR q<>0:>R) by H.
  have triv:((IZR p/INR q* INR q) =IZR p :>R) by * using field.
  have sqrt2:((sqrt (INR 2%nat) * sqrt (INR 2%nat))= INR 2%nat:>R) by sqrt_def.
  have (INR (Zabs_nat p * Zabs_nat p) 
     = (INR (Zabs_nat p) * INR (Zabs_nat p))) 
    by mult_INR.
    ~=  (IZR p* IZR p) by square_abs_square.
    ~=  ((IZR p/INR q*INR q)*(IZR p/INR q*INR q)) by triv. (* we have to factor because field is too weak *)
    ~=  ((IZR p/INR q)*(IZR p/INR q)*(INR q*INR q)) using ring.
    ~=  (sqrt (INR 2%nat) * sqrt (INR 2%nat)*(INR q*INR q)) by H0.
    ~= (INR (2%nat * (q*q)))  by sqrt2,mult_INR. 
  then  (Zabs_nat p * Zabs_nat p = 2* (q * q))%nat.
    ~= ((q*q)+(q*q))%nat.
    ~= (Div2.double (q*q)).
  then (q=0%nat) by main_theorem.
  hence thesis by H.
end proof.
Qed.