1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
(* A bit complex but realistic example whose last fixpoint definition
used to fail in 8.1 because of wrong environment in conversion
problems (see revision 9664) *)
Require Import List.
Require Import Arith.
Parameter predicate : Set.
Parameter function : Set.
Definition variable := nat.
Definition x0 := 0.
Definition var_eq_dec := eq_nat_dec.
Inductive term : Set :=
| App : function -> term -> term
| Var : variable -> term.
Definition atom := (predicate * term)%type.
Inductive formula : Set :=
| Atom : atom -> formula
| Imply : formula -> formula -> formula
| Forall : variable -> formula -> formula.
Notation "A --> B" := (Imply A B) (at level 40).
Definition substitution range := list (variable * range).
Fixpoint remove_assoc (A:Set)(x:variable)(rho: substitution A){struct rho}
: substitution A :=
match rho with
| nil => rho
| (y,t) :: rho => if var_eq_dec x y then remove_assoc A x rho
else (y,t) :: remove_assoc A x rho
end.
Fixpoint assoc (A:Set)(x:variable)(rho:substitution A){struct rho}
: option A :=
match rho with
| nil => None
| (y,t) :: rho => if var_eq_dec x y then Some t
else assoc A x rho
end.
Fixpoint subst_term (rho:substitution term)(t:term){struct t} : term :=
match t with
| Var x => match assoc _ x rho with
| Some a => a
| None => Var x
end
| App f t' => App f (subst_term rho t')
end.
Fixpoint subst_formula (rho:substitution term)(A:formula){struct A}:formula :=
match A with
| Atom (p,t) => Atom (p, subst_term rho t)
| A --> B => subst_formula rho A --> subst_formula rho B
| Forall y A => Forall y (subst_formula (remove_assoc _ y rho) A)
(* assume t closed *)
end.
Definition subst A x t := subst_formula ((x,t):: nil) A.
Record Kripke : Type := {
worlds: Set;
wle : worlds -> worlds -> Type;
wle_refl : forall w, wle w w ;
wle_trans : forall w w' w'', wle w w' -> wle w' w'' -> wle w w'';
domain : Set;
vars : variable -> domain;
funs : function -> domain -> domain;
atoms : worlds -> predicate * domain -> Type;
atoms_mon : forall w w', wle w w' -> forall P, atoms w P -> atoms w' P
}.
Section Sem.
Variable K : Kripke.
Fixpoint sem (rho: substitution (domain K))(t:term){struct t} : domain K :=
match t with
| Var x => match assoc _ x rho with
| Some a => a
| None => vars K x
end
| App f t' => funs K f (sem rho t')
end.
End Sem.
Notation "w <= w'" := (wle _ w w').
Set Implicit Arguments.
Reserved Notation "w ||- A" (at level 70).
Definition context := list formula.
Variable fresh : variable -> context -> Prop.
Variable fresh_out : context -> variable.
Axiom fresh_out_spec : forall Gamma, fresh (fresh_out Gamma) Gamma.
Axiom fresh_peel : forall x A Gamma, fresh x (A::Gamma) -> fresh x Gamma.
Fixpoint force (K:Kripke)(rho: substitution (domain K))(w:worlds K)(A:formula)
{struct A} : Type :=
match A with
| Atom (p,t) => atoms K w (p, sem K rho t)
| A --> B => forall w', w <= w' -> force K rho w' A -> force K rho w' B
| Forall x A => forall w', w <= w' -> forall t, force K ((x,t)::remove_assoc _ x rho) w' A
end.
Notation "w ||- A" := (force _ nil w A).
Reserved Notation "Gamma |- A" (at level 70).
Reserved Notation "Gamma ; A |- C" (at level 70, A at next level).
Inductive context_prefix (Gamma:context) : context -> Type :=
| CtxPrefixRefl : context_prefix Gamma Gamma
| CtxPrefixTrans : forall A Gamma', context_prefix Gamma Gamma' -> context_prefix Gamma (cons A Gamma').
Inductive in_context (A:formula) : list formula -> Prop :=
| InAxiom : forall Gamma, in_context A (cons A Gamma)
| OmWeak : forall Gamma B, in_context A Gamma -> in_context A (cons B Gamma).
Inductive prove : list formula -> formula -> Type :=
| ProofImplyR : forall A B Gamma, prove (cons A Gamma) B
-> prove Gamma (A --> B)
| ProofForallR : forall x A Gamma, (forall y, fresh y (A::Gamma)
-> prove Gamma (subst A x (Var y))) -> prove Gamma (Forall x A)
| ProofCont : forall A Gamma Gamma' C, context_prefix (A::Gamma) Gamma'
-> (prove_stoup Gamma' A C) -> (Gamma' |- C)
where "Gamma |- A" := (prove Gamma A)
with prove_stoup : list formula -> formula -> formula -> Type :=
| ProofAxiom Gamma C: Gamma ; C |- C
| ProofImplyL Gamma C : forall A B, (Gamma |- A)
-> (prove_stoup Gamma B C) -> (prove_stoup Gamma (A --> B) C)
| ProofForallL Gamma C : forall x t A, (prove_stoup Gamma (subst A x t) C)
-> (prove_stoup Gamma (Forall x A) C)
where " Gamma ; B |- A " := (prove_stoup Gamma B A).
Axiom context_prefix_trans :
forall Gamma Gamma' Gamma'',
context_prefix Gamma Gamma'
-> context_prefix Gamma' Gamma''
-> context_prefix Gamma Gamma''.
Axiom Weakening :
forall Gamma Gamma' A,
context_prefix Gamma Gamma' -> Gamma |- A -> Gamma' |- A.
Axiom universal_weakening :
forall Gamma Gamma', context_prefix Gamma Gamma'
-> forall P, Gamma |- Atom P -> Gamma' |- Atom P.
Canonical Structure Universal := Build_Kripke
context
context_prefix
CtxPrefixRefl
context_prefix_trans
term
Var
App
(fun Gamma P => Gamma |- Atom P)
universal_weakening.
Axiom subst_commute :
forall A rho x t,
subst_formula ((x,t)::rho) A = subst (subst_formula rho A) x t.
Axiom subst_formula_atom :
forall rho p t,
Atom (p, sem _ rho t) = subst_formula rho (Atom (p,t)).
Fixpoint universal_completeness (Gamma:context)(A:formula){struct A}
: forall rho:substitution term,
force _ rho Gamma A -> Gamma |- subst_formula rho A
:=
match A
return forall rho, force _ rho Gamma A
-> Gamma |- subst_formula rho A
with
| Atom (p,t) => fun rho H => eq_rect _ (fun A => Gamma |- A) H _ (subst_formula_atom rho p t)
| A --> B => fun rho HImplyAB =>
let A' := subst_formula rho A in
ProofImplyR (universal_completeness (A'::Gamma) B rho
(HImplyAB (A'::Gamma)(CtxPrefixTrans A' (CtxPrefixRefl Gamma))
(universal_completeness_stoup A rho (fun C Gamma' Hle p
=> ProofCont Hle p))))
| Forall x A => fun rho HForallA
=> ProofForallR x (fun y Hfresh
=> eq_rect _ _ (universal_completeness Gamma A _
(HForallA Gamma (CtxPrefixRefl Gamma)(Var y))) _ (subst_commute _ _ _ _ ))
end
with universal_completeness_stoup (Gamma:context)(A:formula){struct A}
: forall rho, (forall C Gamma', context_prefix Gamma Gamma'
-> Gamma' ; subst_formula rho A |- C -> Gamma' |- C)
-> force _ rho Gamma A
:=
match A return forall rho,
(forall C Gamma', context_prefix Gamma Gamma'
-> Gamma' ; subst_formula rho A |- C
-> Gamma' |- C)
-> force _ rho Gamma A
with
| Atom (p,t) as C => fun rho H
=> H _ Gamma (CtxPrefixRefl Gamma)(ProofAxiom _ _)
| A --> B => fun rho H => fun Gamma' Hle HA
=> universal_completeness_stoup B rho (fun C Gamma'' Hle' p
=> H C Gamma'' (context_prefix_trans Hle Hle')
(ProofImplyL (Weakening Hle' (universal_completeness Gamma' A rho HA)) p))
| Forall x A => fun rho H => fun Gamma' Hle t
=> (universal_completeness_stoup A ((x,t)::remove_assoc _ x rho)
(fun C Gamma'' Hle' p =>
H C Gamma'' (context_prefix_trans Hle Hle')
(ProofForallL x t (subst_formula (remove_assoc _ x rho) A)
(eq_rect _ (fun D => Gamma'' ; D |- C) p _ (subst_commute _ _ _ _)))))
end.
(* A simple example that raised an uncaught exception at some point *)
Fail Check fun x => @eq_refl x <: true = true.
|