blob: 0ff61e87f89b3167b5bcca37091baa82bf98595e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
|
Lemma foo1 : nat -> True.
Proof.
intros _.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
exact H'.
Qed.
Lemma foo2 : True.
Proof.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
assert (H'' : True).
{ abstract (exact (bar qux)) using quz. }
exact H''.
Qed.
Set Universe Polymorphism.
Lemma foo3 : nat -> True.
Proof.
intros _.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
exact H'.
Qed.
Lemma foo4 : True.
Proof.
assert (H : True -> True).
{ abstract (exact (fun x => x)) using bar. }
assert (H' : True).
{ abstract (exact (bar I)) using qux. }
assert (H'' : True).
{ abstract (exact (bar qux)) using quz. }
exact H''.
Qed.
|