aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/success/Tauto.v
blob: 7d01d3b07bc855339b8c7895846bf88d31c190ad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
(************************************************************************)
(*         *   The Coq Proof Assistant / The Coq Development Team       *)
(*  v      *   INRIA, CNRS and contributors - Copyright 1999-2018       *)
(* <O___,, *       (see CREDITS file for the list of authors)           *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(**** Tactics Tauto and Intuition ****)

(**** Tauto:
  Tactic for automating proof in Intuionnistic Propositional Calculus, based on
  the contraction-free LJT* of Dickhoff ****)

(**** Intuition:
  Simplifications of goals, based on LJT* calcul ****)

(**** Examples of intuitionistic tautologies ****)
Parameter A B C D E F : Prop.
Parameter even : nat -> Prop.
Parameter P : nat -> Prop.

Lemma Ex_Wallen : (A -> B /\ C) -> (A -> B) \/ (A -> C).
Proof.
   tauto.
Qed.

Lemma Ex_Klenne : ~ ~ (A \/ ~ A).
Proof.
   tauto.
Qed.

Lemma Ex_Klenne' : forall n : nat, ~ ~ (even n \/ ~ even n).
Proof.
   tauto.
Qed.

Lemma Ex_Klenne'' :
 ~ ~ ((forall n : nat, even n) \/ ~ (forall m : nat, even m)).
Proof.
   tauto.
Qed.

Lemma tauto : (forall x : nat, P x) -> forall y : nat, P y.
Proof.
   tauto.
Qed.

Lemma tauto1 : A -> A.
Proof.
   tauto.
Qed.

Lemma tauto2 : (A -> B -> C) -> (A -> B) -> A -> C.
Proof.
   tauto.
Qed.

Lemma a : forall (x0 : A \/ B) (x1 : B /\ C), A -> B.
Proof.
   tauto.
Qed.

Lemma a2 : (A -> B /\ C) -> (A -> B) \/ (A -> C).
Proof.
   tauto.
Qed.

Lemma a4 : ~ A -> ~ A.
Proof.
   tauto.
Qed.

Lemma e2 : ~ ~ (A \/ ~ A).
Proof.
   tauto.
Qed.

Lemma e4 : ~ ~ (A \/ B -> A \/ B).
Proof.
   tauto.
Qed.

Lemma y0 :
 forall (x0 : A) (x1 : ~ A) (x2 : A -> B) (x3 : A \/ B) (x4 : A /\ B),
 A -> False.
Proof.
   tauto.
Qed.

Lemma y1 : forall x0 : (A /\ B) /\ C, B.
Proof.
   tauto.
Qed.

Lemma y2 : forall (x0 : A) (x1 : B), C \/ B.
Proof.
   tauto.
Qed.

Lemma y3 : forall x0 : A /\ B, B /\ A.
Proof.
   tauto.
Qed.

Lemma y5 : forall x0 : A \/ B, B \/ A.
Proof.
   tauto.
Qed.

Lemma y6 : forall (x0 : A -> B) (x1 : A), B.
Proof.
   tauto.
Qed.

Lemma y7 : forall (x0 : A /\ B -> C) (x1 : B) (x2 : A), C.
Proof.
   tauto.
Qed.

Lemma y8 : forall (x0 : A \/ B -> C) (x1 : A), C.
Proof.
   tauto.
Qed.

Lemma y9 : forall (x0 : A \/ B -> C) (x1 : B), C.
Proof.
   tauto.
Qed.

Lemma y10 : forall (x0 : (A -> B) -> C) (x1 : B), C.
Proof.
   tauto.
Qed.

(* This example took much time with the old version of Tauto *)
Lemma critical_example0 : (~ ~ B -> B) -> (A -> B) -> ~ ~ A -> B.
Proof.
   tauto.
Qed.

(* Same remark as previously *)
Lemma critical_example1 : (~ ~ B -> B) -> (~ B -> ~ A) -> ~ ~ A -> B.
Proof.
   tauto.
Qed.

(* This example took very much time (about 3mn on a PIII 450MHz in bytecode)
   with the old Tauto. Now, it's immediate (less than 1s). *)
Lemma critical_example2 : (~ A <-> B) -> (~ B <-> A) -> (~ ~ A <-> A).
Proof.
   tauto.
Qed.

(* This example was a bug *)
Lemma old_bug0 :
 (~ A <-> B) -> (~ (C \/ E) <-> D /\ F) -> (~ (C \/ A \/ E) <-> D /\ B /\ F).
Proof.
   tauto.
Qed.

(* Another bug *)
Lemma old_bug1 : ((A -> B -> False) -> False) -> (B -> False) -> False.
Proof.
   tauto.
Qed.

(* A bug again *)
Lemma old_bug2 :
 ((((C -> False) -> A) -> ((B -> False) -> A) -> False) -> False) ->
 (((C -> B -> False) -> False) -> False) -> ~ A -> A.
Proof.
   tauto.
Qed.

(* A bug from CNF form *)
Lemma old_bug3 :
 ((~ A \/ B) /\ (~ B \/ B) /\ (~ A \/ ~ B) /\ (~ B \/ ~ B) -> False) ->
 ~ ((A -> B) -> B) -> False.
Proof.
   tauto.
Qed.

(* sometimes, the behaviour of Tauto depends on the order of the hyps *)
Lemma old_bug3bis :
 ~ ((A -> B) -> B) ->
 ((~ B \/ ~ B) /\ (~ B \/ ~ A) /\ (B \/ ~ B) /\ (B \/ ~ A) -> False) -> False.
Proof.
   tauto.
Qed.

(* A bug found by Freek Wiedijk <freek@cs.kun.nl> *)
Lemma new_bug :
 ((A <-> B) -> (B <-> C)) ->
 ((B <-> C) -> (C <-> A)) -> ((C <-> A) -> (A <-> B)) -> (A <-> B).
Proof.
   tauto.
Qed.


(*  A private club has the following rules :
 *
 *  . rule 1 : Every non-scottish member wears red socks
 *  . rule 2 : Every member wears a kilt or doesn't wear red socks
 *  . rule 3 : The married members don't go out on sunday
 *  . rule 4 : A member goes out on sunday if and only if he is scottish
 *  . rule 5 : Every member who wears a kilt is scottish and married
 *  . rule 6 : Every scottish member wears a kilt
 *
 *  Actually, no one can be accepted !
 *)

Section club.

Variable Scottish RedSocks WearKilt Married GoOutSunday : Prop.

Hypothesis rule1 : ~ Scottish -> RedSocks.
Hypothesis rule2 : WearKilt \/ ~ RedSocks.
Hypothesis rule3 : Married -> ~ GoOutSunday.
Hypothesis rule4 : GoOutSunday <-> Scottish.
Hypothesis rule5 : WearKilt -> Scottish /\ Married.
Hypothesis rule6 : Scottish -> WearKilt.

Lemma NoMember : False.
 tauto.
Qed.

End club.

(**** Use of Intuition ****)
Lemma intu0 :
 (forall x : nat, P x) /\ B -> (forall y : nat, P y) /\ P 0 \/ B /\ P 0.
Proof.
   intuition.
Qed.

Lemma intu1 :
 (forall A : Prop, A \/ ~ A) -> forall x y : nat, x = y \/ x <> y.
Proof.
   intuition.
Qed.