blob: a472e698fbc33cca531a3d9162a25867ecf2857b (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
Module Type Sub.
Axiom Refl1 : (x:nat)(x=x).
Axiom Refl2 : (x:nat)(x=x).
Axiom Refl3 : (x:nat)(x=x).
Inductive T : Set := A : T.
End Sub.
Module Type Main.
Declare Module M:Sub.
End Main.
Module A <: Main.
Module M <: Sub.
Lemma Refl1 : (x:nat) x=x.
Intros;Reflexivity.
Qed.
Axiom Refl2 : (x:nat) x=x.
Lemma Refl3 : (x:nat) x=x.
Intros;Reflexivity.
Defined.
Inductive T : Set := A : T.
End M.
End A.
(* first test *)
Module F[S:Sub].
Module M:=S.
End F.
Module B <: Main with Module M:=A.M := F A.M.
(* second test *)
Lemma r1 : (A.M.Refl1 == B.M.Refl1).
Proof.
Reflexivity.
Qed.
Lemma r2 : (A.M.Refl2 == B.M.Refl2).
Proof.
Reflexivity.
Qed.
Lemma r3 : (A.M.Refl3 == B.M.Refl3).
Proof.
Reflexivity.
Qed.
Lemma t : (A.M.T == B.M.T).
Proof.
Reflexivity.
Qed.
Lemma a : (A.M.A == B.M.A).
Proof.
Reflexivity.
Qed.
|