1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
Require Eqdep_dec.
(* Check the behaviour of Injection *)
(* Check that Injection tries Intro until *)
Lemma l1 : forall x : nat, S x = S (S x) -> False.
injection 1.
apply n_Sn.
Qed.
Lemma l2 : forall (x : nat) (H : S x = S (S x)), H = H -> False.
injection H.
intros.
apply (n_Sn x H0).
Qed.
(* Check that no tuple needs to be built *)
Lemma l3 :
forall x y : nat,
existS (fun n : nat => {n = n} + {n = n}) x (left _ (refl_equal x)) =
existS (fun n : nat => {n = n} + {n = n}) y (left _ (refl_equal y)) ->
x = y.
intros x y H.
injection H.
exact (fun H => H).
Qed.
(* Check that a tuple is built (actually the same as the initial one) *)
Lemma l4 :
forall p1 p2 : {0 = 0} + {0 = 0},
existS (fun n : nat => {n = n} + {n = n}) 0 p1 =
existS (fun n : nat => {n = n} + {n = n}) 0 p2 ->
existS (fun n : nat => {n = n} + {n = n}) 0 p1 =
existS (fun n : nat => {n = n} + {n = n}) 0 p2.
intros.
injection H.
exact (fun H => H).
Qed.
(* Test injection as *)
Lemma l5 : forall x y z t : nat, (x,y) = (z,t) -> x=z.
intros; injection H as Hxz Hyt.
exact Hxz.
Qed.
(* Check the variants of injection *)
Goal forall x y, S x = S y -> True.
injection 1 as H'.
Undo.
intros.
injection H as H'.
Undo.
Ltac f x := injection x.
f H.
Abort.
Goal (forall x y : nat, x = y -> S x = S y) -> True.
intros.
try injection (H O) || exact I.
Qed.
Goal (forall x y : nat, x = y -> S x = S y) -> True.
intros.
einjection (H O).
instantiate (1:=O).
Abort.
(* Test the injection intropattern *)
Goal forall (a b:nat) l l', cons a l = cons b l' -> a=b.
intros * [= H1 H2].
exact H1.
Qed.
(* Test injection using K, knowing that an equality is decidable *)
(* Basic case, using sigT *)
Scheme Equality for nat.
Goal forall n:nat, forall P:nat -> Type, forall H1 H2:P n,
existT P n H1 = existT P n H2 -> H1 = H2.
intros.
injection H.
intro H0. exact H0.
Abort.
(* Test injection using K, knowing that an equality is decidable *)
(* Basic case, using sigT, with "as" clause *)
Goal forall n:nat, forall P:nat -> Type, forall H1 H2:P n,
existT P n H1 = existT P n H2 -> H1 = H2.
intros.
injection H as H.
exact H.
Abort.
(* Test injection using K, knowing that an equality is decidable *)
(* Dependent case not directly exposing sigT *)
Inductive my_sig (A : Type) (P : A -> Type) : Type :=
my_exist : forall x : A, P x -> my_sig A P.
Goal forall n:nat, forall P:nat -> Type, forall H1 H2:P n,
my_exist _ _ n H1 = my_exist _ _ n H2 -> H1 = H2.
intros.
injection H as H.
exact H.
Abort.
(* Test injection using K, knowing that an equality is decidable *)
(* Dependent case not directly exposing sigT deeply nested *)
Goal forall n:nat, forall P:nat -> Type, forall H1 H2:P n,
(my_exist _ _ n H1,0) = (my_exist _ _ n H2,0) -> H1 = H2.
intros * [= H].
exact H.
Abort.
(* Injection does not projects at positions in Prop... allow it?
Inductive t (A:Prop) : Set := c : A -> t A.
Goal forall p q : True\/True, c _ p = c _ q -> False.
intros.
injection H.
Abort.
*)
(* Injection does not project on discriminable positions... allow it?
Goal 1=2 -> 1=0.
intro H.
injection H.
intro; assumption.
Qed.
*)
|