1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
(* Test des definitions inductives imbriquees *)
Require Import List.
Inductive X : Set :=
cons1 : list X -> X.
Inductive Y : Set :=
cons2 : list (Y * Y) -> Y.
(* Test inductive types with local definitions (arity) *)
Inductive eq1 : forall A:Type, let B:=A in A -> Prop :=
refl1 : eq1 True I.
Check
fun (P : forall A : Type, let B := A in A -> Type) (f : P True I) (A : Type) =>
let B := A in
fun (a : A) (e : eq1 A a) =>
match e in (@eq1 A0 B0 a0) return (P A0 a0) with
| refl1 => f
end.
Inductive eq2 (A:Type) (a:A)
: forall B C:Type, let D:=(A*B*C)%type in D -> Prop :=
refl2 : eq2 A a unit bool (a,tt,true).
(* Check inductive types with local definitions (parameters) *)
Inductive A (C D : Prop) (E:=C) (F:=D) (x y : E -> F) : E -> Set :=
I : forall z : E, A C D x y z.
Check
(fun C D : Prop =>
let E := C in
let F := D in
fun (x y : E -> F) (P : forall c : C, A C D x y c -> Type)
(f : forall z : C, P z (I C D x y z)) (y0 : C)
(a : A C D x y y0) =>
match a as a0 in (A _ _ _ _ y1) return (P y1 a0) with
| I _ _ _ _ x0 => f x0
end).
Record B (C D : Set) (E:=C) (F:=D) (x y : E -> F) : Set := {p : C; q : E}.
Check
(fun C D : Set =>
let E := C in
let F := D in
fun (x y : E -> F) (P : B C D x y -> Type)
(f : forall p0 q0 : C, P (Build_B C D x y p0 q0))
(b : B C D x y) =>
match b as b0 return (P b0) with
| Build_B _ _ _ _ x0 x1 => f x0 x1
end).
(* Check inductive types with local definitions (constructors) *)
Inductive I1 : Set := C1 (_:I1) (_:=0).
Check (fun x:I1 =>
match x with
| C1 i n => (i,n)
end).
(* Check implicit parameters of inductive types (submitted by Pierre
Casteran and also implicit in #338) *)
Set Implicit Arguments.
Unset Strict Implicit.
CoInductive LList (A : Set) : Set :=
| LNil : LList A
| LCons : A -> LList A -> LList A.
Implicit Arguments LNil [A].
Inductive Finite (A : Set) : LList A -> Prop :=
| Finite_LNil : Finite LNil
| Finite_LCons :
forall (a : A) (l : LList A), Finite l -> Finite (LCons a l).
(* Check positivity modulo reduction (cf bug #983) *)
Record P:Type := {PA:Set; PB:Set}.
Definition F (p:P) := (PA p) -> (PB p).
Inductive I_F:Set := c : (F (Build_P nat I_F)) -> I_F.
(* Check that test for binders capturing implicit arguments is not stronger
than needed (problem raised by Cedric Auger) *)
Set Implicit Arguments.
Inductive bool_comp2 (b: bool): bool -> Prop :=
| Opp2: forall q, (match b return Prop with
| true => match q return Prop with
true => False |
false => True end
| false => match q return Prop with
true => True |
false => False end end) -> bool_comp2 b q.
(* This one is still to be made acceptable...
Set Implicit Arguments.
Inductive I A : A->Prop := C a : (forall A, A) -> I a.
*)
(* Test recursively non-uniform parameters (was formerly in params_ind.v) *)
Inductive list (A : Set) : Set :=
| nil : list A
| cons : A -> list (A -> A) -> list A.
(* Check inference of evars in arity using information from constructors *)
Inductive foo1 : forall p, Prop := cc1 : foo1 0.
(* Check cross inference of evars from constructors *)
Inductive foo2 : forall p, Prop := cc2 : forall q, foo2 q | cc3 : foo2 0.
(* An example with reduction removing an occurrence of the inductive type in one of its argument *)
Inductive IND1 (A:Type) := CONS1 : IND1 ((fun x => A) IND1).
(* These types were considered as ill-formed before March 2015, while they
could be accepted considering that the type IND1 above was accepted *)
Inductive IND2 (A:Type) (T:=fun _ : Type->Type => A) := CONS2 : IND2 A -> IND2 (T IND2).
Inductive IND3 (A:Type) (T:=fun _ : Type->Type => A) := CONS3 : IND3 (T IND3) -> IND3 A.
Inductive IND4 (A:Type) := CONS4 : IND4 ((fun x => A) IND4) -> IND4 A.
(* This type was ok before March 2015 *)
Inductive IND5 (A : Type) (T := A) : Type := CONS5 : IND5 ((fun _ => A) 0) -> IND5 A.
(* An example of nested positivity which was rejected by the kernel
before 24 March 2015 (even with Unset Elimination Schemes to avoid
the _rect bug) due to the wrong computation of non-recursively
uniform parameters in list' *)
Inductive list' (A:Type) (B:=A) :=
| nil' : list' A
| cons' : A -> list' B -> list' A.
Inductive tree := node : list' tree -> tree.
(* This type was raising an anomaly when building the _rect scheme,
because of a bug in Inductiveops.get_arity in the presence of
let-ins and recursively non-uniform parameters. *)
Inductive L (A:Type) (T:=A) : Type := C : L nat -> L A.
(* This type was raising an anomaly when building the _rect scheme,
because of a wrong computation of the number of non-recursively
uniform parameters when conversion is needed, leading the example to
hit the Inductiveops.get_arity bug mentioned above (see #3491) *)
Inductive IND6 (A:Type) (T:=A) := CONS6 : IND6 T -> IND6 A.
Module TemplateProp.
(** Check lowering of a template universe polymorphic inductive to Prop *)
Inductive Foo (A : Type) : Type := foo : A -> Foo A.
Check Foo True : Prop.
End TemplateProp.
Module PolyNoLowerProp.
(** Check lowering of a general universe polymorphic inductive to Prop is _failing_ *)
Polymorphic Inductive Foo (A : Type) : Type := foo : A -> Foo A.
Fail Check Foo True : Prop.
End PolyNoLowerProp.
|