1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
|
(* Check forward dependencies *)
Check
(fun (P : nat -> Prop) Q (A : P 0 -> Q) (B : forall n : nat, P (S n) -> Q)
x =>
match x return Q with
| exist O H => A H
| exist (S n) H => B n H
end).
(* Check dependencies in anonymous arguments (from FTA/listn.v) *)
Inductive listn (A : Set) : nat -> Set :=
| niln : listn A 0
| consn : forall (a : A) (n : nat), listn A n -> listn A (S n).
Section Folding.
Variable B C : Set.
Variable g : B -> C -> C.
Variable c : C.
Fixpoint foldrn (n : nat) (bs : listn B n) {struct bs} : C :=
match bs with
| niln => c
| consn b _ tl => g b (foldrn _ tl)
end.
End Folding.
(* -------------------------------------------------------------------- *)
(* Example to test patterns matching on dependent families *)
(* This exemple extracted from the developement done by Nacira Chabane *)
(* (equipe Paris 6) *)
(* -------------------------------------------------------------------- *)
Require Import Prelude.
Require Import Logic_Type.
Section Orderings.
Variable U : Type.
Definition Relation := U -> U -> Prop.
Variable R : Relation.
Definition Reflexive : Prop := forall x : U, R x x.
Definition Transitive : Prop := forall x y z : U, R x y -> R y z -> R x z.
Definition Symmetric : Prop := forall x y : U, R x y -> R y x.
Definition Antisymmetric : Prop := forall x y : U, R x y -> R y x -> x = y.
Definition contains (R R' : Relation) : Prop :=
forall x y : U, R' x y -> R x y.
Definition same_relation (R R' : Relation) : Prop :=
contains R R' /\ contains R' R.
Inductive Equivalence : Prop :=
Build_Equivalence : Reflexive -> Transitive -> Symmetric -> Equivalence.
Inductive PER : Prop :=
Build_PER : Symmetric -> Transitive -> PER.
End Orderings.
(***** Setoid *******)
Inductive Setoid : Type :=
Build_Setoid :
forall (S : Type) (R : Relation S), Equivalence _ R -> Setoid.
Definition elem (A : Setoid) := let (S, R, e) := A in S.
Definition equal (A : Setoid) :=
let (S, R, e) as s return (Relation (elem s)) := A in R.
Axiom prf_equiv : forall A : Setoid, Equivalence (elem A) (equal A).
Axiom prf_refl : forall A : Setoid, Reflexive (elem A) (equal A).
Axiom prf_sym : forall A : Setoid, Symmetric (elem A) (equal A).
Axiom prf_trans : forall A : Setoid, Transitive (elem A) (equal A).
Section Maps.
Variable A B : Setoid.
Definition Map_law (f : elem A -> elem B) :=
forall x y : elem A, equal _ x y -> equal _ (f x) (f y).
Inductive Map : Type :=
Build_Map : forall (f : elem A -> elem B) (p : Map_law f), Map.
Definition explicit_ap (m : Map) :=
match m return (elem A -> elem B) with
| Build_Map f p => f
end.
Axiom pres : forall m : Map, Map_law (explicit_ap m).
Definition ext (f g : Map) :=
forall x : elem A, equal _ (explicit_ap f x) (explicit_ap g x).
Axiom Equiv_map_eq : Equivalence Map ext.
Definition Map_setoid := Build_Setoid Map ext Equiv_map_eq.
End Maps.
Notation ap := (explicit_ap _ _).
(* <Warning> : Grammar is replaced by Notation *)
Definition ap2 (A B C : Setoid) (f : elem (Map_setoid A (Map_setoid B C)))
(a : elem A) := ap (ap f a).
(***** posint ******)
Inductive posint : Type :=
| Z : posint
| Suc : posint -> posint.
Axiom
f_equal : forall (A B : Type) (f : A -> B) (x y : A), x = y -> f x = f y.
Axiom eq_Suc : forall n m : posint, n = m -> Suc n = Suc m.
(* The predecessor function *)
Definition pred (n : posint) : posint :=
match n return posint with
| Z => (* Z *) Z
(* Suc u *)
| Suc u => u
end.
Axiom pred_Sucn : forall m : posint, m = pred (Suc m).
Axiom eq_add_Suc : forall n m : posint, Suc n = Suc m -> n = m.
Axiom not_eq_Suc : forall n m : posint, n <> m -> Suc n <> Suc m.
Definition IsSuc (n : posint) : Prop :=
match n return Prop with
| Z => (* Z *) False
(* Suc p *)
| Suc p => True
end.
Definition IsZero (n : posint) : Prop :=
match n with
| Z => True
| Suc _ => False
end.
Axiom Z_Suc : forall n : posint, Z <> Suc n.
Axiom Suc_Z : forall n : posint, Suc n <> Z.
Axiom n_Sucn : forall n : posint, n <> Suc n.
Axiom Sucn_n : forall n : posint, Suc n <> n.
Axiom eqT_symt : forall a b : posint, a <> b -> b <> a.
(******* Dsetoid *****)
Definition Decidable (A : Type) (R : Relation A) :=
forall x y : A, R x y \/ ~ R x y.
Record DSetoid : Type :=
{Set_of : Setoid; prf_decid : Decidable (elem Set_of) (equal Set_of)}.
(* example de Dsetoide d'entiers *)
Axiom eqT_equiv : Equivalence posint (eq (A:=posint)).
Axiom Eq_posint_deci : Decidable posint (eq (A:=posint)).
(* Dsetoide des posint*)
Definition Set_of_posint := Build_Setoid posint (eq (A:=posint)) eqT_equiv.
Definition Dposint := Build_DSetoid Set_of_posint Eq_posint_deci.
(**************************************)
(* Definition des signatures *)
(* une signature est un ensemble d'operateurs muni
de l'arite de chaque operateur *)
Section Sig.
Record Signature : Type :=
{Sigma : DSetoid; Arity : Map (Set_of Sigma) (Set_of Dposint)}.
Variable S : Signature.
Variable Var : DSetoid.
Inductive TERM : Type :=
| var : elem (Set_of Var) -> TERM
| oper :
forall op : elem (Set_of (Sigma S)), LTERM (ap (Arity S) op) -> TERM
with LTERM : posint -> Type :=
| nil : LTERM Z
| cons : TERM -> forall n : posint, LTERM n -> LTERM (Suc n).
(* -------------------------------------------------------------------- *)
(* Examples *)
(* -------------------------------------------------------------------- *)
Parameter t1 t2 : TERM.
Type
match t1, t2 with
| var v1, var v2 => True
| oper op1 l1, oper op2 l2 => False
| _, _ => False
end.
Parameter n2 : posint.
Parameter l1 l2 : LTERM n2.
Type
match l1, l2 with
| nil, nil => True
| cons v m y, nil => False
| _, _ => False
end.
Type
match l1, l2 with
| nil, nil => True
| cons u n x, cons v m y => False
| _, _ => False
end.
Definition equalT (t1 t2 : TERM) : Prop :=
match t1, t2 with
| var v1, var v2 => True
| oper op1 l1, oper op2 l2 => False
| _, _ => False
end.
Definition EqListT (n1 : posint) (l1 : LTERM n1) (n2 : posint)
(l2 : LTERM n2) : Prop :=
match l1, l2 with
| nil, nil => True
| cons t1 n1' l1', cons t2 n2' l2' => False
| _, _ => False
end.
Reset equalT.
(* ------------------------------------------------------------------*)
(* Initial exemple (without patterns) *)
(*-------------------------------------------------------------------*)
Fixpoint equalT (t1 : TERM) : TERM -> Prop :=
match t1 return (TERM -> Prop) with
| var v1 =>
(*var*)
fun t2 : TERM =>
match t2 return Prop with
| var v2 =>
(*var*) equal _ v1 v2
(*oper*)
| oper op2 _ => False
end
(*oper*)
| oper op1 l1 =>
fun t2 : TERM =>
match t2 return Prop with
| var v2 =>
(*var*) False
(*oper*)
| oper op2 l2 =>
equal _ op1 op2 /\
EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2
end
end
with EqListT (n1 : posint) (l1 : LTERM n1) {struct l1} :
forall n2 : posint, LTERM n2 -> Prop :=
match l1 in (LTERM _) return (forall n2 : posint, LTERM n2 -> Prop) with
| nil =>
(*nil*)
fun (n2 : posint) (l2 : LTERM n2) =>
match l2 in (LTERM _) return Prop with
| nil =>
(*nil*) True
(*cons*)
| cons t2 n2' l2' => False
end
(*cons*)
| cons t1 n1' l1' =>
fun (n2 : posint) (l2 : LTERM n2) =>
match l2 in (LTERM _) return Prop with
| nil =>
(*nil*) False
(*cons*)
| cons t2 n2' l2' => equalT t1 t2 /\ EqListT n1' l1' n2' l2'
end
end.
(* ---------------------------------------------------------------- *)
(* Version with simple patterns *)
(* ---------------------------------------------------------------- *)
Reset equalT.
Fixpoint equalT (t1 : TERM) : TERM -> Prop :=
match t1 with
| var v1 =>
fun t2 : TERM =>
match t2 with
| var v2 => equal _ v1 v2
| oper op2 _ => False
end
| oper op1 l1 =>
fun t2 : TERM =>
match t2 with
| var _ => False
| oper op2 l2 =>
equal _ op1 op2 /\
EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2
end
end
with EqListT (n1 : posint) (l1 : LTERM n1) {struct l1} :
forall n2 : posint, LTERM n2 -> Prop :=
match l1 return (forall n2 : posint, LTERM n2 -> Prop) with
| nil =>
fun (n2 : posint) (l2 : LTERM n2) =>
match l2 with
| nil => True
| _ => False
end
| cons t1 n1' l1' =>
fun (n2 : posint) (l2 : LTERM n2) =>
match l2 with
| nil => False
| cons t2 n2' l2' => equalT t1 t2 /\ EqListT n1' l1' n2' l2'
end
end.
Reset equalT.
Fixpoint equalT (t1 : TERM) : TERM -> Prop :=
match t1 with
| var v1 =>
fun t2 : TERM =>
match t2 with
| var v2 => equal _ v1 v2
| oper op2 _ => False
end
| oper op1 l1 =>
fun t2 : TERM =>
match t2 with
| var _ => False
| oper op2 l2 =>
equal _ op1 op2 /\
EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2
end
end
with EqListT (n1 : posint) (l1 : LTERM n1) (n2 : posint)
(l2 : LTERM n2) {struct l1} : Prop :=
match l1 with
| nil => match l2 with
| nil => True
| _ => False
end
| cons t1 n1' l1' =>
match l2 with
| nil => False
| cons t2 n2' l2' => equalT t1 t2 /\ EqListT n1' l1' n2' l2'
end
end.
(* ---------------------------------------------------------------- *)
(* Version with multiple patterns *)
(* ---------------------------------------------------------------- *)
Reset equalT.
Fixpoint equalT (t1 t2 : TERM) {struct t1} : Prop :=
match t1, t2 with
| var v1, var v2 => equal _ v1 v2
| oper op1 l1, oper op2 l2 =>
equal _ op1 op2 /\ EqListT (ap (Arity S) op1) l1 (ap (Arity S) op2) l2
| _, _ => False
end
with EqListT (n1 : posint) (l1 : LTERM n1) (n2 : posint)
(l2 : LTERM n2) {struct l1} : Prop :=
match l1, l2 with
| nil, nil => True
| cons t1 n1' l1', cons t2 n2' l2' =>
equalT t1 t2 /\ EqListT n1' l1' n2' l2'
| _, _ => False
end.
(* ------------------------------------------------------------------ *)
End Sig.
(* Exemple soumis par Bruno *)
Definition bProp (b : bool) : Prop := if b then True else False.
Definition f0 (F : False) (ty : bool) : bProp ty :=
match ty as _, ty return (bProp ty) with
| true, true => I
| _, false => F
| _, true => I
end.
(* Simplification of bug/wish #1671 *)
Inductive I : unit -> Type :=
| C : forall a, I a -> I tt.
(*
Definition F (l:I tt) : l = l :=
match l return l = l with
| C tt (C _ l') => refl_equal (C tt (C _ l'))
end.
one would expect that the compilation of F (this involves
some kind of pattern-unification) would produce:
*)
Definition F (l:I tt) : l = l :=
match l return l = l with
| C tt l' => match l' return C _ l' = C _ l' with C _ l'' => refl_equal (C tt (C _ l'')) end
end.
Inductive J : nat -> Type :=
| D : forall a, J (S a) -> J a.
(*
Definition G (l:J O) : l = l :=
match l return l = l with
| D O (D 1 l') => refl_equal (D O (D 1 l'))
| D _ _ => refl_equal _
end.
one would expect that the compilation of G (this involves inversion)
would produce:
*)
Definition G (l:J O) : l = l :=
match l return l = l with
| D 0 l'' =>
match l'' as _l'' in J n return
match n return forall l:J n, Prop with
| O => fun _ => l = l
| S p => fun l'' => D p l'' = D p l''
end _l'' with
| D 1 l' => refl_equal (D O (D 1 l'))
| _ => refl_equal _
end
| _ => refl_equal _
end.
Fixpoint app {A} {n m} (v : listn A n) (w : listn A m) : listn A (n + m) :=
match v with
| niln => w
| consn a n' v' => consn _ a _ (app v' w)
end.
|