blob: 8f95484cfd05f700c46d29326939bd511073c748 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
|
(* Check coercions in patterns *)
Inductive I : Set :=
| C1 : nat -> I
| C2 : I -> I.
Coercion C1 : nat >-> I.
(* Coercion at the root of pattern *)
Check (fun x => match x with
| C2 n => 0
| O => 0
| S n => n
end).
(* Coercion not at the root of pattern *)
Check (fun x => match x with
| C2 O => 0
| _ => 0
end).
(* Unification and coercions inside patterns *)
Check
(fun x : option nat => match x with
| None => 0
| Some O => 0
| _ => 0
end).
(* Coercion up to delta-conversion, and unification *)
Coercion somenat := Some (A:=nat).
Check (fun x => match x with
| None => 0
| O => 0
| S n => n
end).
(* Coercions with parameters *)
Inductive listn : nat -> Set :=
| niln : listn 0
| consn : forall n : nat, nat -> listn n -> listn (S n).
Inductive I' : nat -> Set :=
| C1' : forall n : nat, listn n -> I' n
| C2' : forall n : nat, I' n -> I' n.
Coercion C1' : listn >-> I'.
Check (fun x : I' 0 => match x with
| C2' _ _ => 0
| niln => 0
| _ => 0
end).
Check (fun x : I' 0 => match x with
| C2' _ niln => 0
| _ => 0
end).
(* This one could eventually be solved, the "Fail" is just to ensure *)
(* that it does not fail with an anomaly, as it did at some time *)
Fail Check (fun x : I' 0 => match x return _ x with
| C2' _ _ => 0
| niln => 0
| _ => 0
end).
(* Check insertion of coercions around matched subterm *)
Parameter A:Set.
Parameter f:> A -> nat.
Inductive J : Set := D : A -> J.
Check (fun x => match x with
| D 0 => 0
| D _ => 1
end).
(* Check coercions against the type of the term to match *)
(* Used to fail in V8.1beta *)
Inductive C : Set := c : C.
Inductive E : Set := e :> C -> E.
Check fun (x : E) => match x with c => e c end.
(* Check coercions with uniform parameters (cf bug #1168) *)
Inductive C' : bool -> Set := c' : C' true.
Inductive E' (b : bool) : Set := e' :> C' b -> E' b.
Check fun (x : E' true) => match x with c' => e' true c' end.
|