1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Require Import ssrbool TestSuite.ssr_mini_mathcomp.
Goal forall m n p, n <= p -> m <= n -> m <= p.
by move=> m n p le_n_p /leq_trans; apply.
Undo 1.
by move=> m n p le_n_p /leq_trans /(_ le_n_p) le_m_p; exact: le_m_p.
Undo 1.
by move=> m n p le_n_p /leq_trans ->.
Qed.
Goal forall P Q X : Prop, Q -> (True -> X -> Q = P) -> X -> P.
by move=> P Q X q V /V <-.
Qed.
Lemma test0: forall a b, a && a && b -> b.
by move=> a b; repeat move=> /andP []; move=> *.
Qed.
Lemma test1 : forall a b, a && b -> b.
by move=> a b /andP /andP /andP [] //.
Qed.
Lemma test2 : forall a b, a && b -> b.
by move=> a b /andP /andP /(@andP a) [] //.
Qed.
Lemma test3 : forall a b, a && (b && b) -> b.
by move=> a b /andP [_ /andP [_ //]].
Qed.
Lemma test4: forall a b, a && b = b && a.
by move=> a b; apply/andP/andP=> ?; apply/andP/andP/andP; rewrite andbC; apply/andP.
Qed.
Lemma test5: forall C I A O, (True -> O) -> (O -> A) -> (True -> A -> I) -> (I -> C) -> C.
by move=> c i a o O A I C; apply/C/I/A/O.
Qed.
Lemma test6: forall A B, (A -> B) -> A -> B.
move=> A B A_to_B a; move/A_to_B in a; exact: a.
Qed.
Lemma test7: forall A B, (A -> B) -> A -> B.
move=> A B A_to_B a; apply A_to_B in a; exact: a.
Qed.
|