blob: ef4658287fcaa96899438a700138f243229ed95e (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
|
(************************************************************************)
(* * The Coq Proof Assistant / The Coq Development Team *)
(* v * INRIA, CNRS and contributors - Copyright 1999-2018 *)
(* <O___,, * (see CREDITS file for the list of authors) *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(* * (see LICENSE file for the text of the license) *)
(************************************************************************)
(* (c) Copyright 2006-2016 Microsoft Corporation and Inria. *)
Require Import ssreflect.
Require Import ssrbool TestSuite.ssr_mini_mathcomp.
Axiom daemon : False. Ltac myadmit := case: daemon.
Lemma test x : (x == x) = (x + x.+1 == 2 * x + 1).
case: (X in _ = X) / eqP => _.
match goal with |- (x == x) = true => myadmit end.
match goal with |- (x == x) = false => myadmit end.
Qed.
Lemma test1 x : (x == x) = (x + x.+1 == 2 * x + 1).
elim: (x in RHS).
match goal with |- (x == x) = _ => myadmit end.
match goal with |- forall n, (x == x) = _ -> (x == x) = _ => myadmit end.
Qed.
|