1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
|
le_n: forall n : nat, n <= n
le_0_n: forall n : nat, 0 <= n
le_S: forall n m : nat, n <= m -> n <= S m
le_pred: forall n m : nat, n <= m -> Nat.pred n <= Nat.pred m
le_n_S: forall n m : nat, n <= m -> S n <= S m
le_S_n: forall n m : nat, S n <= S m -> n <= m
false: bool
true: bool
negb: bool -> bool
implb: bool -> bool -> bool
orb: bool -> bool -> bool
andb: bool -> bool -> bool
xorb: bool -> bool -> bool
Nat.even: nat -> bool
Nat.odd: nat -> bool
Nat.leb: nat -> nat -> bool
Nat.ltb: nat -> nat -> bool
Nat.testbit: nat -> nat -> bool
Nat.eqb: nat -> nat -> bool
mult_n_O: forall n : nat, 0 = n * 0
plus_O_n: forall n : nat, 0 + n = n
plus_n_O: forall n : nat, n = n + 0
pred_Sn: forall n : nat, n = Nat.pred (S n)
f_equal_pred: forall x y : nat, x = y -> Nat.pred x = Nat.pred y
eq_add_S: forall n m : nat, S n = S m -> n = m
eq_S: forall x y : nat, x = y -> S x = S y
max_r: forall n m : nat, n <= m -> Nat.max n m = m
max_l: forall n m : nat, m <= n -> Nat.max n m = n
min_r: forall n m : nat, m <= n -> Nat.min n m = m
min_l: forall n m : nat, n <= m -> Nat.min n m = n
plus_n_Sm: forall n m : nat, S (n + m) = n + S m
plus_Sn_m: forall n m : nat, S n + m = S (n + m)
mult_n_Sm: forall n m : nat, n * m + n = n * S m
f_equal2_plus:
forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 + x2 = y1 + y2
f_equal2_mult:
forall x1 y1 x2 y2 : nat, x1 = y1 -> x2 = y2 -> x1 * x2 = y1 * y2
h: newdef n
h: P n
|