aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/output/PrintInfos.out
blob: 1307a8f26dc59da0234adeaa7c2d923c0c3fc982 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
existT : forall (A : Type) (P : A -> Type) (x : A), P x -> {x : A & P x}

existT is template universe polymorphic
Argument A is implicit
Argument scopes are [type_scope function_scope _ _]
Expands to: Constructor Coq.Init.Specif.existT
Inductive sigT (A : Type) (P : A -> Type) : Type :=
    existT : forall x : A, P x -> {x : A & P x}

For sigT: Argument A is implicit
For existT: Argument A is implicit
For sigT: Argument scopes are [type_scope type_scope]
For existT: Argument scopes are [type_scope function_scope _ _]
existT : forall (A : Type) (P : A -> Type) (x : A), P x -> {x : A & P x}

Argument A is implicit
Inductive eq (A : Type) (x : A) : A -> Prop :=  eq_refl : x = x

For eq: Argument A is implicit and maximally inserted
For eq_refl, when applied to no arguments:
  Arguments A, x are implicit and maximally inserted
For eq_refl, when applied to 1 argument:
  Argument A is implicit
For eq: Argument scopes are [type_scope _ _]
For eq_refl: Argument scopes are [type_scope _]
eq_refl : forall (A : Type) (x : A), x = x

When applied to no arguments:
  Arguments A, x are implicit and maximally inserted
When applied to 1 argument:
  Argument A is implicit
Argument scopes are [type_scope _]
Expands to: Constructor Coq.Init.Logic.eq_refl
eq_refl : forall (A : Type) (x : A), x = x

When applied to no arguments:
  Arguments A, x are implicit and maximally inserted
When applied to 1 argument:
  Argument A is implicit
Nat.add = 
fix add (n m : nat) {struct n} : nat :=
  match n with
  | 0 => m
  | S p => S (add p m)
  end
     : nat -> nat -> nat

Argument scopes are [nat_scope nat_scope]
Nat.add : nat -> nat -> nat

Argument scopes are [nat_scope nat_scope]
Nat.add is transparent
Expands to: Constant Coq.Init.Nat.add
Nat.add : nat -> nat -> nat

plus_n_O : forall n : nat, n = n + 0

Argument scope is [nat_scope]
plus_n_O is opaque
Expands to: Constant Coq.Init.Peano.plus_n_O
Inductive le (n : nat) : nat -> Prop :=
    le_n : n <= n | le_S : forall m : nat, n <= m -> n <= S m

For le_S: Argument m is implicit
For le_S: Argument n is implicit and maximally inserted
For le: Argument scopes are [nat_scope nat_scope]
For le_n: Argument scope is [nat_scope]
For le_S: Argument scopes are [nat_scope nat_scope _]
comparison : Set

Expands to: Inductive Coq.Init.Datatypes.comparison
Inductive comparison : Set :=
    Eq : comparison | Lt : comparison | Gt : comparison
bar : foo

Expanded type for implicit arguments
bar : forall x : nat, x = 0

Argument x is implicit and maximally inserted
Expands to: Constant Top.bar
*** [ bar : foo ]

Expanded type for implicit arguments
bar : forall x : nat, x = 0

Argument x is implicit and maximally inserted
Module Coq.Init.Peano
Notation existS2 := existT2
Expands to: Notation Coq.Init.Specif.existS2
Inductive eq (A : Type) (x : A) : A -> Prop :=  eq_refl : x = x

For eq: Argument A is implicit and maximally inserted
For eq_refl, when applied to no arguments:
  Arguments A, x are implicit and maximally inserted
For eq_refl, when applied to 1 argument:
  Argument A is implicit and maximally inserted
For eq: Argument scopes are [type_scope _ _]
For eq_refl: Argument scopes are [type_scope _]
n:nat

Hypothesis of the goal context.
h:(n <> newdef n)

Hypothesis of the goal context.
g:(nat -> nat)

Constant (let in) of the goal context.
h:(n <> newdef n)

Hypothesis of the goal context.