1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
|
existT : forall (A : Type) (P : A -> Type) (x : A), P x -> {x : A & P x}
existT is template universe polymorphic
Argument A is implicit
Argument scopes are [type_scope function_scope _ _]
Expands to: Constructor Coq.Init.Specif.existT
Inductive sigT (A : Type) (P : A -> Type) : Type :=
existT : forall x : A, P x -> {x : A & P x}
For sigT: Argument A is implicit
For existT: Argument A is implicit
For sigT: Argument scopes are [type_scope type_scope]
For existT: Argument scopes are [type_scope function_scope _ _]
existT : forall (A : Type) (P : A -> Type) (x : A), P x -> {x : A & P x}
Argument A is implicit
Inductive eq (A : Type) (x : A) : A -> Prop := eq_refl : x = x
For eq: Argument A is implicit and maximally inserted
For eq_refl, when applied to no arguments:
Arguments A, x are implicit and maximally inserted
For eq_refl, when applied to 1 argument:
Argument A is implicit
For eq: Argument scopes are [type_scope _ _]
For eq_refl: Argument scopes are [type_scope _]
eq_refl : forall (A : Type) (x : A), x = x
When applied to no arguments:
Arguments A, x are implicit and maximally inserted
When applied to 1 argument:
Argument A is implicit
Argument scopes are [type_scope _]
Expands to: Constructor Coq.Init.Logic.eq_refl
eq_refl : forall (A : Type) (x : A), x = x
When applied to no arguments:
Arguments A, x are implicit and maximally inserted
When applied to 1 argument:
Argument A is implicit
Nat.add =
fix add (n m : nat) {struct n} : nat :=
match n with
| 0 => m
| S p => S (add p m)
end
: nat -> nat -> nat
Argument scopes are [nat_scope nat_scope]
Nat.add : nat -> nat -> nat
Argument scopes are [nat_scope nat_scope]
Nat.add is transparent
Expands to: Constant Coq.Init.Nat.add
Nat.add : nat -> nat -> nat
plus_n_O : forall n : nat, n = n + 0
Argument scope is [nat_scope]
plus_n_O is opaque
Expands to: Constant Coq.Init.Peano.plus_n_O
Inductive le (n : nat) : nat -> Prop :=
le_n : n <= n | le_S : forall m : nat, n <= m -> n <= S m
For le_S: Argument m is implicit
For le_S: Argument n is implicit and maximally inserted
For le: Argument scopes are [nat_scope nat_scope]
For le_n: Argument scope is [nat_scope]
For le_S: Argument scopes are [nat_scope nat_scope _]
comparison : Set
Expands to: Inductive Coq.Init.Datatypes.comparison
Inductive comparison : Set :=
Eq : comparison | Lt : comparison | Gt : comparison
bar : foo
Expanded type for implicit arguments
bar : forall x : nat, x = 0
Argument x is implicit and maximally inserted
Expands to: Constant Top.bar
*** [ bar : foo ]
Expanded type for implicit arguments
bar : forall x : nat, x = 0
Argument x is implicit and maximally inserted
Module Coq.Init.Peano
Notation existS2 := existT2
Expands to: Notation Coq.Init.Specif.existS2
Inductive eq (A : Type) (x : A) : A -> Prop := eq_refl : x = x
For eq: Argument A is implicit and maximally inserted
For eq_refl, when applied to no arguments:
Arguments A, x are implicit and maximally inserted
For eq_refl, when applied to 1 argument:
Argument A is implicit and maximally inserted
For eq: Argument scopes are [type_scope _ _]
For eq_refl: Argument scopes are [type_scope _]
n:nat
Hypothesis of the goal context.
h:(n <> newdef n)
Hypothesis of the goal context.
g:(nat -> nat)
Constant (let in) of the goal context.
h:(n <> newdef n)
Hypothesis of the goal context.
|