aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/output/Notations3.out
blob: 6ef75dd135ad381b792147cc97869daf973d60f1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
{x : nat | x = 0} + {True /\ False} + {forall x : nat, x = 0}
     : Set
[<0, 2 >]
     : nat * nat * (nat * nat)
[<0, 2 >]
     : nat * nat * (nat * nat)
(0, 2, (2, 2))
     : nat * nat * (nat * nat)
pair (pair O (S (S O))) (pair (S (S O)) O)
     : prod (prod nat nat) (prod nat nat)
<< 0, 2, 4 >>
     : nat * nat * nat * (nat * (nat * nat))
<< 0, 2, 4 >>
     : nat * nat * nat * (nat * (nat * nat))
(0, 2, 4, (2, (2, 0)))
     : nat * nat * nat * (nat * (nat * nat))
(0, 2, 4, (0, (2, 4)))
     : nat * nat * nat * (nat * (nat * nat))
pair (pair (pair O (S (S O))) (S (S (S (S O)))))
  (pair (S (S (S (S O)))) (pair (S (S O)) O))
     : prod (prod (prod nat nat) nat) (prod nat (prod nat nat))
ETA x y : nat, Nat.add
     : nat -> nat -> nat
ETA x y : nat, Nat.add
     : nat -> nat -> nat
ETA x y : nat, Nat.add
     : nat -> nat -> nat
fun x y : nat => Nat.add x y
     : forall (_ : nat) (_ : nat), nat
ETA x y : nat, le_S
     : forall x y : nat, x <= y -> x <= S y
fun f : forall x : nat * (bool * unit), ?T => CURRY (x : nat) (y : bool), f
     : (forall x : nat * (bool * unit), ?T) ->
       forall (x : nat) (y : bool), ?T@{x:=(x, (y, tt))}
where
?T : [x : nat * (bool * unit) |- Type] 
fun f : forall x : bool * (nat * unit), ?T =>
CURRYINV (x : nat) (y : bool), f
     : (forall x : bool * (nat * unit), ?T) ->
       forall (x : nat) (y : bool), ?T@{x:=(y, (x, tt))}
where
?T : [x : bool * (nat * unit) |- Type] 
fun f : forall x : unit * nat * bool, ?T => CURRYLEFT (x : nat) (y : bool), f
     : (forall x : unit * nat * bool, ?T) ->
       forall (x : nat) (y : bool), ?T@{x:=(tt, x, y)}
where
?T : [x : unit * nat * bool |- Type] 
fun f : forall x : unit * bool * nat, ?T =>
CURRYINVLEFT (x : nat) (y : bool), f
     : (forall x : unit * bool * nat, ?T) ->
       forall (x : nat) (y : bool), ?T@{x:=(tt, y, x)}
where
?T : [x : unit * bool * nat |- Type] 
forall n : nat, {#n | 1 > n}
     : Prop
forall x : nat, {|x | x > 0|}
     : Prop
exists2 x : nat, x = 1 & x = 2
     : Prop
fun n : nat =>
foo2 n (fun x y z : nat => (fun _ _ _ : nat => x + y + z = 0) z y x)
     : nat -> Prop
fun n : nat =>
foo2 n (fun a b c : nat => (fun _ _ _ : nat => a + b + c = 0) c b a)
     : nat -> Prop
fun n : nat =>
foo2 n (fun n0 y z : nat => (fun _ _ _ : nat => n0 + y + z = 0) z y n0)
     : nat -> Prop
fun n : nat =>
foo2 n (fun x n0 z : nat => (fun _ _ _ : nat => x + n0 + z = 0) z n0 x)
     : nat -> Prop
fun n : nat =>
foo2 n (fun x y n0 : nat => (fun _ _ _ : nat => x + y + n0 = 0) n0 y x)
     : nat -> Prop
fun n : nat => {|n, y | fun _ _ _ : nat => n + y = 0 |}_2
     : nat -> Prop
fun n : nat => {|n, y | fun _ _ _ : nat => n + y = 0 |}_2
     : nat -> Prop
fun n : nat => {|n, n0 | fun _ _ _ : nat => n + n0 = 0 |}_2
     : nat -> Prop
fun n : nat =>
foo2 n (fun x y z : nat => (fun _ _ _ : nat => x + y + n = 0) z y x)
     : nat -> Prop
fun n : nat =>
foo2 n (fun x y z : nat => (fun _ _ _ : nat => x + y + n = 0) z y x)
     : nat -> Prop
fun n : nat => {|n, fun _ : nat => 0 = 0 |}_3
     : nat -> Prop
fun n : nat => {|n, fun _ : nat => n = 0 |}_3
     : nat -> Prop
fun n : nat => foo3 n (fun x _ : nat => ETA z : nat, (fun _ : nat => x = 0))
     : nat -> Prop
fun n : nat => {|n, fun _ : nat => 0 = 0 |}_4
     : nat -> Prop
fun n : nat => {|n, fun _ : nat => n = 0 |}_4
     : nat -> Prop
fun n : nat => foo4 n (fun _ _ : nat => ETA z : nat, (fun _ : nat => z = 0))
     : nat -> Prop
fun n : nat => foo4 n (fun _ y : nat => ETA z : nat, (fun _ : nat => y = 0))
     : nat -> Prop
tele (t : Type) '(y, z) (x : t0) := tt
     : forall t : Type, nat * nat -> t -> fpack
[fun x : nat => x + 0;; fun x : nat => x + 1;; fun x : nat => x + 2]
     : (nat -> nat) *
       ((nat -> nat) *
        ((nat -> nat) *
         ((nat -> nat) * ((nat -> nat) * ((nat -> nat) * (nat -> nat))))))
foo5 x nat x
     : nat -> nat
fun x : ?A => x === x
     : forall x : ?A, x = x
where
?A : [x : ?A |- Type] (x cannot be used)
{{0, 1}}
     : nat * nat
{{0, 1, 2}}
     : nat * (nat * nat)
{{0, 1, 2, 3}}
     : nat * (nat * (nat * nat))
letpair x [1] = {0};
return (1, 2, 3, 4)
     : nat * nat * nat * nat
{{ 1 | 1 // 1 }}
     : nat
!!! _ _ : nat, True
     : (nat -> Prop) * ((nat -> Prop) * Prop)
((*1).2).3
     : nat
*(1.2)
     : nat