1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
|
2 3
: PAIR
2 [+] 3
: nat
forall (A : Set) (le : A -> A -> Prop) (x y : A), le x y \/ le y x
: Prop
match (0, 0, 0) with
| (x, y, z) => x + y + z
end
: nat
let '(a, _, _) := (2, 3, 4) in a
: nat
exists myx y : bool, myx = y
: Prop
fun (P : nat -> nat -> Prop) (x : nat) => exists x0, P x x0
: (nat -> nat -> Prop) -> nat -> Prop
∃ n p : nat, n + p = 0
: Prop
let a := 0 in
∃ x y : nat,
let b := 1 in
let c := b in
let d := 2 in ∃ z : nat, let e := 3 in let f := 4 in x + y = z + d
: Prop
∀ n p : nat, n + p = 0
: Prop
λ n p : nat, n + p = 0
: nat -> nat -> Prop
λ (A : Type) (n p : A), n = p
: ∀ A : Type, A -> A -> Prop
λ A : Type, ∃ n p : A, n = p
: Type -> Prop
λ A : Type, ∀ n p : A, n = p
: Type -> Prop
let' f (x y : nat) (a:=0) (z : nat) (_ : bool) := x + y + z + 1 in f 0 1 2
: bool -> nat
λ (f : nat -> nat) (x : nat), f(x) + S(x)
: (nat -> nat) -> nat -> nat
Notation plus2 n := (S(S(n)))
λ n : list(nat),
match n with
| nil => 2
| 0 :: _ => 2
| list1 => 0
| 1 :: _ :: _ => 2
| plus2 _ :: _ => 2
end
: list(nat) -> nat
# x : nat => x
: nat -> nat
# _ : nat => 2
: nat -> nat
|