aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/output/Notations2.out
blob: 6731d5054e1025dc684009b2c3a164cafa4b977f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
2 3
     : PAIR
2[+]3
     : nat
forall (A : Set) (le : A -> A -> Prop) (x y : A), le x y \/ le y x
     : Prop
match (0, 0, 0) with
| (x, y, z) => x + y + z
end
     : nat
let '(a, _, _) := (2, 3, 4) in a
     : nat
∃ n p : nat, n + p = 0
     : Prop
∀ n p : nat, n + p = 0
     : Prop
λ n p : nat, n + p = 0
     : nat -> nat -> Prop
λ (A : Type) (n p : A), n = p
     : ∀ A : Type, A -> A -> Prop
λ A : Type, ∃ n p : A, n = p
     : Type -> Prop
λ A : Type, ∀ n p : A, n = p
     : Type -> Prop
Defining 'let'' as keyword
let' f (x y z : nat) (_ : bool) := x + y + z + 1 in f 0 1 2
     : bool -> nat