blob: a4d19d69303226343fd8ae2ce00a32d8a982d879 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
(* Cases with let-in in constructors types *)
Inductive t : Set :=
k : let x := t in x -> x.
Print t_rect.
Record TT : Type := CTT { f1 := 0 : nat; f2: nat; f3 : f1=f1 }.
Eval cbv in fun d:TT => match d return 0 = 0 with CTT a _ b => b end.
Eval lazy in fun d:TT => match d return 0 = 0 with CTT a _ b => b end.
(* Do not contract nested patterns with dependent return type *)
(* see bug #1699 *)
Require Import Arith.
Definition proj (x y:nat) (P:nat -> Type) (def:P x) (prf:P y) : P y :=
match eq_nat_dec x y return P y with
| left eqprf =>
match eqprf in (_ = z) return (P z) with
| refl_equal => def
end
| _ => prf
end.
Print proj.
(* Use notations even below aliases *)
Require Import List.
Fixpoint foo (A:Type) (l:list A) : option A :=
match l with
| nil => None
| x0 :: nil => Some x0
| x0 :: (x1 :: xs) as l0 => foo A l0
end.
Print foo.
(* Accept and use notation with binded parameters *)
Inductive I (A: Type) : Type := C : A -> I A.
Notation "x <: T" := (C T x) (at level 38).
Definition uncast A (x : I A) :=
match x with
| x <: _ => x
end.
Print uncast.
(* Do not duplicate the matched term *)
Axiom A : nat -> bool.
Definition foo' :=
match A 0 with
| true => true
| x => x
end.
Print foo'.
(* Was bug #3293 (eta-expansion at "match" printing time was failing because
of let-in's interpreted as being part of the expansion) *)
Variable b : bool.
Variable P : bool -> Prop.
Inductive B : Prop := AC : P b -> B.
Definition f : B -> True.
Proof.
intros [x].
destruct b as [|] ; exact Logic.I.
Defined.
Print f.
|