blob: 3b246023363ea754cae66c557d99a8bc6e6ddbb1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
|
Require Import ZArith.
Require Import Psatz.
Open Scope Z_scope.
Lemma two_x_eq_1 : forall x, 2 * x = 1 -> False.
Proof.
intros.
lia.
Qed.
Lemma two_x_y_eq_1 : forall x y, 2 * x + 2 * y = 1 -> False.
Proof.
intros.
lia.
Qed.
Lemma two_x_y_z_eq_1 : forall x y z, 2 * x + 2 * y + 2 * z= 1 -> False.
Proof.
intros.
lia.
Qed.
Lemma omega_nightmare : forall x y, 27 <= 11 * x + 13 * y <= 45 -> -10 <= 7 * x - 9 * y <= 4 -> False.
Proof.
intros ; intuition auto.
lia.
Qed.
Lemma compact_proof : forall z,
(z < 0) ->
(z >= 0) ->
(0 >= z \/ 0 < z) -> False.
Proof.
intros.
lia.
Qed.
|