aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/failure/sortelim.v
blob: 3d2eef6a985b07dc2a28cf445127151aae0e16fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
(* This is a proof of false which used to be accepted by Coq (Jan 12, 2014) due
to a DeBruijn index error in the check for allowed elimination sorts.

Proof by Maxime Dénès, using a proof of Hurkens' paradox by Hugo Herbelin to derive
inconsistency. *)

(* We start by adapting the proof of Hurkens' paradox by Hugo in
theories/Logic/Hurkens.v, so that instead of requiring a retract
from Type into Prop up to equality, we require it only up to
equivalence.
*)

Section Hurkens.

Definition Type2 := Type.
Definition Type1 := Type : Type2.

(** Assumption of a retract from Type into Prop *)

Variable down : Type1 -> Prop.
Variable up : Prop -> Type1.

Hypothesis back : forall A, up (down A) -> A.

Hypothesis forth : forall A, A -> up (down A).

Hypothesis backforth : forall (A:Type) (P:A->Type) (a:A),
      P (back A (forth A a)) -> P a.

Hypothesis backforth_r : forall (A:Type) (P:A->Type) (a:A),
      P a -> P (back A (forth A a)).

(** Proof *)

Definition V : Type1 := forall A:Prop, ((up A -> Prop) -> up A -> Prop) -> up A -> Prop.
Definition U : Type1 := V -> Prop.

Definition sb (z:V) : V := fun A r a => r (z A r) a.
Definition le (i:U -> Prop) (x:U) : Prop := x (fun A r a => i (fun v => sb v A r a)).
Definition le' (i:up (down U) -> Prop) (x:up (down U)) : Prop := le (fun a:U => i (forth _ a)) (back _ x).
Definition induct (i:U -> Prop) : Type1 := forall x:U, up (le i x) -> up (i x).
Definition WF : U := fun z => down (induct (fun a => z (down U) le' (forth _ a))).
Definition I (x:U) : Prop :=
  (forall i:U -> Prop, up (le i x) -> up (i (fun v => sb v (down U) le' (forth _ x)))) -> False.

Lemma Omega : forall i:U -> Prop, induct i -> up (i WF).
Proof.
intros i y.
apply y.
unfold le, WF, induct.
apply forth.
intros x H0.
apply y.
unfold sb, le', le.
compute.
apply backforth_r.
exact H0.
Qed.

Lemma lemma1 : induct (fun u => down (I u)).
Proof.
unfold induct.
intros x p.
apply forth.
intro q.
generalize (q (fun u => down (I u)) p).
intro r.
apply back in r.
apply r.
intros i j.
unfold le, sb, le', le in j |-.
apply backforth in j.
specialize q with (i := fun y => i (fun v:V => sb v (down U) le' (forth _ y))).
apply q.
exact j.
Qed.

Lemma lemma2 : (forall i:U -> Prop, induct i -> up (i WF)) -> False.
Proof.
intro x.
generalize (x (fun u => down (I u)) lemma1).
intro r; apply back in r.
apply r.
intros i H0.
apply (x (fun y => i (fun v => sb v (down U) le' (forth _ y)))).
unfold le, WF in H0.
apply back in H0.
exact H0.
Qed.

Theorem paradox : False.
Proof.
exact (lemma2 Omega).
Qed.

End Hurkens.

(* Alright, now we use a DeBruijn index off-by-1 error to build a type
satisfying the hypotheses of the paradox. What is tricky is that the pretyper is
not affected by the bug (only the kernel is). Even worse, since our goal is to
bypass the elimination restriction for types in Prop, we have to devise a way to
feed the kernel with an illegal pattern matching without going through the
pattern matching compiler (which calls the pretyper). The trick is to use the
record machinery, which defines projections, checking if the kernel accepts
it. *)

Definition informative (x : bool) :=
  match x with
  | true => Type
  | false => Prop
  end.

Definition depsort (T : Type) (x : bool) : informative x :=
  match x with
  | true => T
  | false => True
  end.

(* The let-bound parameters in the record below trigger the error *)

Record Box (ff := false) (tt := true) (T : Type) : Prop :=
  wrap {prop : depsort T tt}.

Definition down (x : Type) : Prop := Box x.
Definition up (x : Prop) : Type := x.

Fail Definition back A : up (down A) -> A := prop A.

(* If the projection has been defined, the following script derives a proof of
false.

Definition forth A : A -> up (down A) := wrap A.

Definition backforth (A:Type) (P:A->Type) (a:A) :
      P (back A (forth A a)) -> P a := fun H => H.

Definition backforth_r (A:Type) (P:A->Type) (a:A) :
      P a -> P (back A (forth A a)) := fun H => H.

(* Everything set up, we just check that we built the right context for the
paradox to apply. *)

Theorem pandora : False.
apply (paradox down up back forth backforth backforth_r).
Qed.

Print Assumptions pandora.

*)