1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
Unset Strict Universe Declaration.
Require Import TestSuite.admit.
Module Comment1.
Set Implicit Arguments.
Polymorphic Record Category (obj : Type) :=
{
Morphism : obj -> obj -> Type;
Identity : forall o, Morphism o o
}.
Polymorphic Record Functor objC (C :Category objC) objD (D : Category objD) :=
{
ObjectOf :> objC -> objD;
MorphismOf : forall s d, C.(Morphism) s d -> D.(Morphism) (ObjectOf s) (ObjectOf d);
FIdentityOf : forall o, MorphismOf _ _ (C.(Identity) o) = D.(Identity) (ObjectOf o)
}.
Create HintDb functor discriminated.
Hint Rewrite @FIdentityOf : functor.
Polymorphic Definition ComposeFunctors objC C objD D objE E (G : @Functor objD D objE E) (F : @Functor objC C objD D) : Functor C E.
refine {| ObjectOf := (fun c => G (F c));
MorphismOf := (fun _ _ m => G.(MorphismOf) _ _ (F.(MorphismOf) _ _ m))
|};
intros; autorewrite with functor; reflexivity.
Defined.
Definition Cat0 : Category@{i j} Empty_set.
refine {|
Morphism := fun s d : Empty_set => s = d;
Identity := fun o : Empty_set => eq_refl
|};
admit.
Defined.
Set Printing All.
Set Printing Universes.
Lemma foo objC (C : @Category objC) (C0 : Category (Functor Cat0 C)) (x : Functor Cat0 Cat0)
: forall (y : Functor C0 Cat0) z, (ComposeFunctors y z = x).
intro. intro.
unfold ComposeFunctors.
Abort.
End Comment1.
Module Comment2.
Set Implicit Arguments.
Polymorphic Record Category (obj : Type) :=
{
Morphism : obj -> obj -> Type;
Identity : forall o, Morphism o o;
Compose : forall s d d2, Morphism d d2 -> Morphism s d -> Morphism s d2;
LeftIdentity : forall a b (f : Morphism a b), Compose (Identity b) f = f
}.
Polymorphic Record Functor objC (C : Category objC) objD (D : Category objD) :=
{
ObjectOf : objC -> objD;
MorphismOf : forall s d, C.(Morphism) s d -> D.(Morphism) (ObjectOf s) (ObjectOf d)
}.
Create HintDb morphism discriminated.
Polymorphic Hint Resolve @LeftIdentity : morphism.
Polymorphic Definition ProductCategory objC (C : Category objC) objD (D : Category objD) : @Category (objC * objD)%type.
refine {|
Morphism := (fun s d => (C.(Morphism) (fst s) (fst d) * D.(Morphism) (snd s) (snd d))%type);
Identity := (fun o => (Identity _ (fst o), Identity _ (snd o)));
Compose := (fun (s d d2 : (objC * objD)%type) m2 m1 => (C.(Compose) _ _ _ (fst m2) (fst m1), D.(Compose) _ _ _ (snd m2) (snd m1)))
|};
intros; apply injective_projections; simpl; auto with morphism. (* Replacing [auto with morphism] with [apply @LeftIdentity] removes the error *)
Defined.
Polymorphic Definition Cat0 : Category Empty_set.
refine {|
Morphism := fun s d : Empty_set => s = d;
Identity := fun o : Empty_set => eq_refl;
Compose := fun s d d2 m0 m1 => eq_trans m1 m0
|};
admit.
Defined.
Set Printing All.
Set Printing Universes.
Polymorphic Definition ProductLaw0Functor (objC : Type) (C : Category objC) : Functor (ProductCategory C Cat0) Cat0.
refine (Build_Functor (ProductCategory C Cat0) Cat0 _ _). (* Toplevel input, characters 15-71:
Error: Refiner was given an argument
"prod (* Top.2289 Top.2289 *) objC Empty_set" of type
"Type (* Top.2289 *)" instead of "Set". *)
Abort.
Polymorphic Definition ProductLaw0Functor (objC : Type) (C : Category objC) : Functor (ProductCategory C Cat0) Cat0.
econstructor. (* Toplevel input, characters 0-12:
Error: No applicable tactic.
*)
Abort.
End Comment2.
Module Comment3.
Polymorphic Lemma foo {obj : Type} : 1 = 1.
trivial.
Qed.
Polymorphic Hint Resolve foo. (* success *)
Polymorphic Hint Rewrite @foo. (* Success *)
Polymorphic Hint Resolve @foo. (* Error: @foo is a term and cannot be made a polymorphic hint, only global references can be polymorphic hints. *)
Fail Polymorphic Hint Rewrite foo. (* Error: Cannot infer the implicit parameter obj of foo. *)
End Comment3.
|