blob: 0037b6fdea309f26490e699e7d81fba464203511 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
|
Set Universe Polymorphism.
Definition le@{i j} : Type@{j} :=
(fun A : Type@{j} => A)
(unit : Type@{i}).
Definition eq@{i j} : Type@{j} := let x := le@{i j} in le@{j i}.
Record Inj@{i j} (A : Type@{i}) (B : Type@{j}) : Type@{j} :=
{ inj : A }.
Monomorphic Universe u1.
Let ty1 : Type@{u1} := Set.
Check Inj@{Set u1}.
(* Would fail with univ inconsistency if the universe was minimized *)
Record Inj'@{i j} (A : Type@{i}) (B : Type@{j}) : Type@{j} :=
{ inj' : A; foo : Type@{j} := eq@{i j} }.
Fail Check Inj'@{Set u1}. (* Do not drop constraint i = j *)
Check Inj'@{Set Set}.
|