1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
|
(* -*- mode: coq; coq-prog-args: ("-emacs" "-nois" "-indices-matter" "-R" "." "Top" "-top" "bug_oog_looping_rewrite_01") -*- *)
(* File reduced by coq-bug-finder from original input, then from 2553 lines to 1932 lines, then from 1946 lines to 1932 lines, then from 2467 lines to 1002 lines, then from 1016 lines to 1002 lines *)
(* coqc version 8.5 (January 2016) compiled on Jan 23 2016 16:15:22 with OCaml 4.01.0
coqtop version 8.5 (January 2016) *)
Inductive False := .
Axiom proof_admitted : False.
Tactic Notation "admit" := case proof_admitted.
Require Coq.Init.Datatypes.
Import Coq.Init.Notations.
Global Set Universe Polymorphism.
Notation "A -> B" := (forall (_ : A), B) : type_scope.
Global Set Primitive Projections.
Inductive sum (A B : Type) : Type :=
| inl : A -> sum A B
| inr : B -> sum A B.
Notation nat := Coq.Init.Datatypes.nat.
Notation S := Coq.Init.Datatypes.S.
Notation "x + y" := (sum x y) : type_scope.
Record prod (A B : Type) := pair { fst : A ; snd : B }.
Notation "x * y" := (prod x y) : type_scope.
Module Export Specif.
Set Implicit Arguments.
Record sig {A} (P : A -> Type) := exist { proj1_sig : A ; proj2_sig : P proj1_sig }.
Arguments proj1_sig {A P} _ / .
Notation sigT := sig (only parsing).
Notation existT := exist (only parsing).
Notation "{ x : A & P }" := (sigT (fun x:A => P)) : type_scope.
Notation projT1 := proj1_sig (only parsing).
Notation projT2 := proj2_sig (only parsing).
End Specif.
Module Export HoTT_DOT_Basics_DOT_Overture.
Module Export HoTT.
Module Export Basics.
Module Export Overture.
Global Set Keyed Unification.
Global Unset Strict Universe Declaration.
Notation Type0 := Set.
Definition Type1@{i} := Eval hnf in let gt := (Set : Type@{i}) in Type@{i}.
Definition Type2@{i j} := Eval hnf in let gt := (Type1@{j} : Type@{i}) in Type@{i}.
Definition Type2le@{i j} := Eval hnf in let gt := (Set : Type@{i}) in
let ge := ((fun x => x) : Type1@{j} -> Type@{i}) in Type@{i}.
Notation idmap := (fun x => x).
Delimit Scope function_scope with function.
Delimit Scope path_scope with path.
Delimit Scope fibration_scope with fibration.
Delimit Scope trunc_scope with trunc.
Open Scope trunc_scope.
Open Scope path_scope.
Open Scope fibration_scope.
Open Scope nat_scope.
Open Scope function_scope.
Notation "( x ; y )" := (existT _ x y) : fibration_scope.
Notation pr1 := projT1.
Notation pr2 := projT2.
Notation "x .1" := (pr1 x) (at level 3, format "x '.1'") : fibration_scope.
Notation "x .2" := (pr2 x) (at level 3, format "x '.2'") : fibration_scope.
Notation compose := (fun g f x => g (f x)).
Notation "g 'o' f" := (compose g%function f%function) (at level 40, left associativity) : function_scope.
Inductive paths {A : Type} (a : A) : A -> Type :=
idpath : paths a a.
Arguments idpath {A a} , [A] a.
Notation "x = y :> A" := (@paths A x y) : type_scope.
Notation "x = y" := (x = y :>_) : type_scope.
Definition inverse {A : Type} {x y : A} (p : x = y) : y = x
:= match p with idpath => idpath end.
Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z :=
match p, q with idpath, idpath => idpath end.
Notation "1" := idpath : path_scope.
Notation "p @ q" := (concat p%path q%path) (at level 20) : path_scope.
Notation "p ^" := (inverse p%path) (at level 3, format "p '^'") : path_scope.
Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y :=
match p with idpath => u end.
Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing) : path_scope.
Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y
:= match p with idpath => idpath end.
Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x)
:= forall x:A, f x = g x.
Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope.
Definition Sect {A B : Type} (s : A -> B) (r : B -> A) :=
forall x : A, r (s x) = x.
Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv {
equiv_inv : B -> A ;
eisretr : Sect equiv_inv f;
eissect : Sect f equiv_inv;
eisadj : forall x : A, eisretr (f x) = ap f (eissect x)
}.
Arguments eisretr {A B}%type_scope f%function_scope {_} _.
Record Equiv A B := BuildEquiv {
equiv_fun : A -> B ;
equiv_isequiv : IsEquiv equiv_fun
}.
Coercion equiv_fun : Equiv >-> Funclass.
Global Existing Instance equiv_isequiv.
Notation "A <~> B" := (Equiv A B) (at level 85) : type_scope.
Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3, format "f '^-1'") : function_scope.
Class Contr_internal (A : Type) := BuildContr {
center : A ;
contr : (forall y : A, center = y)
}.
Arguments center A {_}.
Inductive trunc_index : Type :=
| minus_two : trunc_index
| trunc_S : trunc_index -> trunc_index.
Notation "n .+1" := (trunc_S n) (at level 2, left associativity, format "n .+1") : trunc_scope.
Notation "-2" := minus_two (at level 0) : trunc_scope.
Notation "-1" := (-2.+1) (at level 0) : trunc_scope.
Notation "0" := (-1.+1) : trunc_scope.
Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type :=
match n with
| -2 => Contr_internal A
| n'.+1 => forall (x y : A), IsTrunc_internal n' (x = y)
end.
Class IsTrunc (n : trunc_index) (A : Type) : Type :=
Trunc_is_trunc : IsTrunc_internal n A.
Global Instance istrunc_paths (A : Type) n `{H : IsTrunc n.+1 A} (x y : A)
: IsTrunc n (x = y)
:= H x y.
Notation Contr := (IsTrunc -2).
Notation IsHProp := (IsTrunc -1).
Hint Extern 0 => progress change Contr_internal with Contr in * : typeclass_instances.
Monomorphic Axiom dummy_funext_type : Type0.
Monomorphic Class Funext := { dummy_funext_value : dummy_funext_type }.
Inductive Unit : Type1 :=
tt : Unit.
Class IsPointed (A : Type) := point : A.
Arguments point A {_}.
Record pType :=
{ pointed_type : Type ;
ispointed_type : IsPointed pointed_type }.
Coercion pointed_type : pType >-> Sortclass.
Global Existing Instance ispointed_type.
Definition hfiber {A B : Type} (f : A -> B) (y : B) := { x : A & f x = y }.
Ltac revert_opaque x :=
revert x;
match goal with
| [ |- forall _, _ ] => idtac
| _ => fail 1 "Reverted constant is not an opaque variable"
end.
End Overture.
End Basics.
End HoTT.
End HoTT_DOT_Basics_DOT_Overture.
Module Export HoTT_DOT_Basics_DOT_PathGroupoids.
Module Export HoTT.
Module Export Basics.
Module Export PathGroupoids.
Local Open Scope path_scope.
Definition concat_p1 {A : Type} {x y : A} (p : x = y) :
p @ 1 = p
:=
match p with idpath => 1 end.
Definition concat_1p {A : Type} {x y : A} (p : x = y) :
1 @ p = p
:=
match p with idpath => 1 end.
Definition concat_p_pp {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) :
p @ (q @ r) = (p @ q) @ r :=
match r with idpath =>
match q with idpath =>
match p with idpath => 1
end end end.
Definition concat_pp_p {A : Type} {x y z t : A} (p : x = y) (q : y = z) (r : z = t) :
(p @ q) @ r = p @ (q @ r) :=
match r with idpath =>
match q with idpath =>
match p with idpath => 1
end end end.
Definition concat_pV {A : Type} {x y : A} (p : x = y) :
p @ p^ = 1
:=
match p with idpath => 1 end.
Definition moveR_Vp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) :
p = r @ q -> r^ @ p = q.
admit.
Defined.
Definition moveL_Vp {A : Type} {x y z : A} (p : x = z) (q : y = z) (r : x = y) :
r @ q = p -> q = r^ @ p.
admit.
Defined.
Definition moveR_M1 {A : Type} {x y : A} (p q : x = y) :
1 = p^ @ q -> p = q.
admit.
Defined.
Definition ap_pp {A B : Type} (f : A -> B) {x y z : A} (p : x = y) (q : y = z) :
ap f (p @ q) = (ap f p) @ (ap f q)
:=
match q with
idpath =>
match p with idpath => 1 end
end.
Definition ap_V {A B : Type} (f : A -> B) {x y : A} (p : x = y) :
ap f (p^) = (ap f p)^
:=
match p with idpath => 1 end.
Definition ap_compose {A B C : Type} (f : A -> B) (g : B -> C) {x y : A} (p : x = y) :
ap (g o f) p = ap g (ap f p)
:=
match p with idpath => 1 end.
Definition concat_pA1 {A : Type} {f : A -> A} (p : forall x, x = f x) {x y : A} (q : x = y) :
(p x) @ (ap f q) = q @ (p y)
:=
match q as i in (_ = y) return (p x @ ap f i = i @ p y) with
| idpath => concat_p1 _ @ (concat_1p _)^
end.
End PathGroupoids.
End Basics.
End HoTT.
End HoTT_DOT_Basics_DOT_PathGroupoids.
Module Export HoTT_DOT_Basics_DOT_Equivalences.
Module Export HoTT.
Module Export Basics.
Module Export Equivalences.
Definition isequiv_commsq {A B C D}
(f : A -> B) (g : C -> D) (h : A -> C) (k : B -> D)
(p : k o f == g o h)
`{IsEquiv _ _ f} `{IsEquiv _ _ h} `{IsEquiv _ _ k}
: IsEquiv g.
admit.
Defined.
Section Adjointify.
Context {A B : Type} (f : A -> B) (g : B -> A).
Context (isretr : Sect g f) (issect : Sect f g).
Let issect' := fun x =>
ap g (ap f (issect x)^) @ ap g (isretr (f x)) @ issect x.
Let is_adjoint' (a : A) : isretr (f a) = ap f (issect' a).
Proof.
unfold issect'.
apply moveR_M1.
repeat rewrite ap_pp, concat_p_pp; rewrite <- ap_compose.
rewrite (concat_pA1 (fun b => (isretr b)^) (ap f (issect a)^)).
repeat rewrite concat_pp_p; rewrite ap_V; apply moveL_Vp; rewrite concat_p1.
rewrite concat_p_pp, <- ap_compose.
rewrite (concat_pA1 (fun b => (isretr b)^) (isretr (f a))).
rewrite concat_pV, concat_1p; reflexivity.
Qed.
Definition isequiv_adjointify : IsEquiv f
:= BuildIsEquiv A B f g isretr issect' is_adjoint'.
End Adjointify.
End Equivalences.
End Basics.
End HoTT.
End HoTT_DOT_Basics_DOT_Equivalences.
Module Export HoTT_DOT_Basics_DOT_Trunc.
Module Export HoTT.
Module Export Basics.
Module Export Trunc.
Generalizable Variables A B m n f.
Definition trunc_equiv A {B} (f : A -> B)
`{IsTrunc n A} `{IsEquiv A B f}
: IsTrunc n B.
admit.
Defined.
Record TruncType (n : trunc_index) := BuildTruncType {
trunctype_type : Type ;
istrunc_trunctype_type : IsTrunc n trunctype_type
}.
Arguments BuildTruncType _ _ {_}.
Coercion trunctype_type : TruncType >-> Sortclass.
Notation "n -Type" := (TruncType n) (at level 1) : type_scope.
Notation hProp := (-1)-Type.
Notation BuildhProp := (BuildTruncType -1).
End Trunc.
End Basics.
End HoTT.
End HoTT_DOT_Basics_DOT_Trunc.
Module Export HoTT_DOT_Types_DOT_Unit.
Module Export HoTT.
Module Export Types.
Module Export Unit.
Notation unit_name x := (fun (_ : Unit) => x).
End Unit.
End Types.
End HoTT.
End HoTT_DOT_Types_DOT_Unit.
Module Export HoTT_DOT_Types_DOT_Sigma.
Module Export HoTT.
Module Export Types.
Module Export Sigma.
Local Open Scope path_scope.
Definition path_sigma_uncurried {A : Type} (P : A -> Type) (u v : sigT P)
(pq : {p : u.1 = v.1 & p # u.2 = v.2})
: u = v
:= match pq.2 in (_ = v2) return u = (v.1; v2) with
| 1 => match pq.1 as p in (_ = v1) return u = (v1; p # u.2) with
| 1 => 1
end
end.
Definition path_sigma {A : Type} (P : A -> Type) (u v : sigT P)
(p : u.1 = v.1) (q : p # u.2 = v.2)
: u = v
:= path_sigma_uncurried P u v (p;q).
Definition path_sigma' {A : Type} (P : A -> Type) {x x' : A} {y : P x} {y' : P x'}
(p : x = x') (q : p # y = y')
: (x;y) = (x';y')
:= path_sigma P (x;y) (x';y') p q.
Global Instance isequiv_pr1_contr {A} {P : A -> Type}
`{forall a, Contr (P a)}
: IsEquiv (@pr1 A P) | 100.
Proof.
refine (isequiv_adjointify (@pr1 A P)
(fun a => (a ; center (P a))) _ _).
-
intros a; reflexivity.
-
intros [a p].
refine (path_sigma' P 1 (contr _)).
Defined.
Definition path_sigma_hprop {A : Type} {P : A -> Type}
`{forall x, IsHProp (P x)}
(u v : sigT P)
: u.1 = v.1 -> u = v
:= path_sigma_uncurried P u v o pr1^-1.
End Sigma.
End Types.
End HoTT.
End HoTT_DOT_Types_DOT_Sigma.
Module Export HoTT_DOT_Extensions.
Module Export HoTT.
Module Export Extensions.
Section Extensions.
Definition ExtensionAlong {A B : Type} (f : A -> B)
(P : B -> Type) (d : forall x:A, P (f x))
:= { s : forall y:B, P y & forall x:A, s (f x) = d x }.
Fixpoint ExtendableAlong@{i j k l}
(n : nat) {A : Type@{i}} {B : Type@{j}}
(f : A -> B) (C : B -> Type@{k}) : Type@{l}
:= match n with
| 0 => Unit@{l}
| S n => (forall (g : forall a, C (f a)),
ExtensionAlong@{i j k l l} f C g) *
forall (h k : forall b, C b),
ExtendableAlong n f (fun b => h b = k b)
end.
Definition ooExtendableAlong@{i j k l}
{A : Type@{i}} {B : Type@{j}}
(f : A -> B) (C : B -> Type@{k}) : Type@{l}
:= forall n, ExtendableAlong@{i j k l} n f C.
End Extensions.
End Extensions.
End HoTT.
End HoTT_DOT_Extensions.
Module Export HoTT.
Module Export Modalities.
Module Export ReflectiveSubuniverse.
Module Type ReflectiveSubuniverses.
Parameter ReflectiveSubuniverse@{u a} : Type2@{u a}.
Parameter O_reflector@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter In@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter O_inO@{u a i} : forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
In@{u a i} O (O_reflector@{u a i} O T).
Parameter to@{u a i} : forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
T -> O_reflector@{u a i} O T.
Parameter inO_equiv_inO@{u a i j k} :
forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}) (U : Type@{j})
(T_inO : In@{u a i} O T) (f : T -> U) (feq : IsEquiv f),
let gei := ((fun x => x) : Type@{i} -> Type@{k}) in
let gej := ((fun x => x) : Type@{j} -> Type@{k}) in
In@{u a j} O U.
Parameter hprop_inO@{u a i}
: Funext -> forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
IsHProp (In@{u a i} O T).
Parameter extendable_to_O@{u a i j k}
: forall (O : ReflectiveSubuniverse@{u a}) {P : Type2le@{i a}} {Q : Type2le@{j a}} {Q_inO : In@{u a j} O Q},
ooExtendableAlong@{i i j k} (to O P) (fun _ => Q).
End ReflectiveSubuniverses.
Module ReflectiveSubuniverses_Theory (Os : ReflectiveSubuniverses).
Export Os.
Module Export Coercions.
Coercion O_reflector : ReflectiveSubuniverse >-> Funclass.
End Coercions.
End ReflectiveSubuniverses_Theory.
Module Type ReflectiveSubuniverses_Restriction_Data (Os : ReflectiveSubuniverses).
Parameter New_ReflectiveSubuniverse@{u a} : Type2@{u a}.
Parameter ReflectiveSubuniverses_restriction@{u a}
: New_ReflectiveSubuniverse@{u a} -> Os.ReflectiveSubuniverse@{u a}.
End ReflectiveSubuniverses_Restriction_Data.
Module ReflectiveSubuniverses_Restriction
(Os : ReflectiveSubuniverses)
(Res : ReflectiveSubuniverses_Restriction_Data Os)
<: ReflectiveSubuniverses.
Definition ReflectiveSubuniverse := Res.New_ReflectiveSubuniverse.
Definition O_reflector@{u a i} (O : ReflectiveSubuniverse@{u a})
:= Os.O_reflector@{u a i} (Res.ReflectiveSubuniverses_restriction O).
Definition In@{u a i} (O : ReflectiveSubuniverse@{u a})
:= Os.In@{u a i} (Res.ReflectiveSubuniverses_restriction O).
Definition O_inO@{u a i} (O : ReflectiveSubuniverse@{u a})
:= Os.O_inO@{u a i} (Res.ReflectiveSubuniverses_restriction O).
Definition to@{u a i} (O : ReflectiveSubuniverse@{u a})
:= Os.to@{u a i} (Res.ReflectiveSubuniverses_restriction O).
Definition inO_equiv_inO@{u a i j k} (O : ReflectiveSubuniverse@{u a})
:= Os.inO_equiv_inO@{u a i j k} (Res.ReflectiveSubuniverses_restriction O).
Definition hprop_inO@{u a i} (H : Funext) (O : ReflectiveSubuniverse@{u a})
:= Os.hprop_inO@{u a i} H (Res.ReflectiveSubuniverses_restriction O).
Definition extendable_to_O@{u a i j k} (O : ReflectiveSubuniverse@{u a})
:= @Os.extendable_to_O@{u a i j k} (Res.ReflectiveSubuniverses_restriction@{u a} O).
End ReflectiveSubuniverses_Restriction.
Module ReflectiveSubuniverses_FamUnion
(Os1 Os2 : ReflectiveSubuniverses)
<: ReflectiveSubuniverses.
Definition ReflectiveSubuniverse@{u a} : Type2@{u a}
:= Os1.ReflectiveSubuniverse@{u a} + Os2.ReflectiveSubuniverse@{u a}.
Definition O_reflector@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}.
admit.
Defined.
Definition In@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Proof.
intros [O|O]; [ exact (Os1.In@{u a i} O)
| exact (Os2.In@{u a i} O) ].
Defined.
Definition O_inO@{u a i}
: forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
In@{u a i} O (O_reflector@{u a i} O T).
admit.
Defined.
Definition to@{u a i} : forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
T -> O_reflector@{u a i} O T.
admit.
Defined.
Definition inO_equiv_inO@{u a i j k} :
forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}) (U : Type@{j})
(T_inO : In@{u a i} O T) (f : T -> U) (feq : IsEquiv f),
In@{u a j} O U.
Proof.
intros [O|O]; [ exact (Os1.inO_equiv_inO@{u a i j k} O)
| exact (Os2.inO_equiv_inO@{u a i j k} O) ].
Defined.
Definition hprop_inO@{u a i}
: Funext -> forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
IsHProp (In@{u a i} O T).
admit.
Defined.
Definition extendable_to_O@{u a i j k}
: forall (O : ReflectiveSubuniverse@{u a}) {P : Type2le@{i a}} {Q : Type2le@{j a}} {Q_inO : In@{u a j} O Q},
ooExtendableAlong@{i i j k} (to O P) (fun _ => Q).
admit.
Defined.
End ReflectiveSubuniverses_FamUnion.
End ReflectiveSubuniverse.
End Modalities.
End HoTT.
Module Type Modalities.
Parameter Modality@{u a} : Type2@{u a}.
Parameter O_reflector@{u a i} : forall (O : Modality@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter In@{u a i} : forall (O : Modality@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter O_inO@{u a i} : forall (O : Modality@{u a}) (T : Type@{i}),
In@{u a i} O (O_reflector@{u a i} O T).
Parameter to@{u a i} : forall (O : Modality@{u a}) (T : Type@{i}),
T -> O_reflector@{u a i} O T.
Parameter inO_equiv_inO@{u a i j k} :
forall (O : Modality@{u a}) (T : Type@{i}) (U : Type@{j})
(T_inO : In@{u a i} O T) (f : T -> U) (feq : IsEquiv f),
let gei := ((fun x => x) : Type@{i} -> Type@{k}) in
let gej := ((fun x => x) : Type@{j} -> Type@{k}) in
In@{u a j} O U.
Parameter hprop_inO@{u a i}
: Funext -> forall (O : Modality@{u a}) (T : Type@{i}),
IsHProp (In@{u a i} O T).
End Modalities.
Module Modalities_to_ReflectiveSubuniverses
(Os : Modalities) <: ReflectiveSubuniverses.
Import Os.
Fixpoint O_extendable@{u a i j k} (O : Modality@{u a})
(A : Type@{i}) (B : O_reflector O A -> Type@{j})
(B_inO : forall a, In@{u a j} O (B a)) (n : nat)
: ExtendableAlong@{i i j k} n (to O A) B.
admit.
Defined.
Definition ReflectiveSubuniverse := Modality.
Definition O_reflector := O_reflector.
Definition In@{u a i} : forall (O : ReflectiveSubuniverse@{u a}),
Type2le@{i a} -> Type2le@{i a}
:= In@{u a i}.
Definition O_inO@{u a i} : forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
In@{u a i} O (O_reflector@{u a i} O T)
:= O_inO@{u a i}.
Definition to := to.
Definition inO_equiv_inO@{u a i j k} :
forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}) (U : Type@{j})
(T_inO : In@{u a i} O T) (f : T -> U) (feq : IsEquiv f),
In@{u a j} O U
:= inO_equiv_inO@{u a i j k}.
Definition hprop_inO@{u a i}
: Funext -> forall (O : ReflectiveSubuniverse@{u a}) (T : Type@{i}),
IsHProp (In@{u a i} O T)
:= hprop_inO@{u a i}.
Definition extendable_to_O@{u a i j k} (O : ReflectiveSubuniverse@{u a})
{P : Type2le@{i a}} {Q : Type2le@{j a}} {Q_inO : In@{u a j} O Q}
: ooExtendableAlong@{i i j k} (to O P) (fun _ => Q)
:= fun n => O_extendable O P (fun _ => Q) (fun _ => Q_inO) n.
End Modalities_to_ReflectiveSubuniverses.
Module Type EasyModalities.
Parameter Modality@{u a} : Type2@{u a}.
Parameter O_reflector@{u a i} : forall (O : Modality@{u a}),
Type2le@{i a} -> Type2le@{i a}.
Parameter to@{u a i} : forall (O : Modality@{u a}) (T : Type@{i}),
T -> O_reflector@{u a i} O T.
Parameter minO_pathsO@{u a i}
: forall (O : Modality@{u a}) (A : Type@{i})
(z z' : O_reflector@{u a i} O A),
IsEquiv (to@{u a i} O (z = z')).
End EasyModalities.
Module EasyModalities_to_Modalities (Os : EasyModalities)
<: Modalities.
Import Os.
Definition Modality := Modality.
Definition O_reflector@{u a i} := O_reflector@{u a i}.
Definition to@{u a i} := to@{u a i}.
Definition In@{u a i}
: forall (O : Modality@{u a}), Type@{i} -> Type@{i}
:= fun O A => IsEquiv@{i i} (to O A).
Definition hprop_inO@{u a i} `{Funext} (O : Modality@{u a})
(T : Type@{i})
: IsHProp (In@{u a i} O T).
admit.
Defined.
Definition O_ind_internal@{u a i j k} (O : Modality@{u a})
(A : Type@{i}) (B : O_reflector@{u a i} O A -> Type@{j})
(B_inO : forall oa, In@{u a j} O (B oa))
: let gei := ((fun x => x) : Type@{i} -> Type@{k}) in
let gej := ((fun x => x) : Type@{j} -> Type@{k}) in
(forall a, B (to O A a)) -> forall oa, B oa.
admit.
Defined.
Definition O_ind_beta_internal@{u a i j k} (O : Modality@{u a})
(A : Type@{i}) (B : O_reflector@{u a i} O A -> Type@{j})
(B_inO : forall oa, In@{u a j} O (B oa))
(f : forall a : A, B (to O A a)) (a:A)
: O_ind_internal@{u a i j k} O A B B_inO f (to O A a) = f a.
admit.
Defined.
Definition O_inO@{u a i} (O : Modality@{u a}) (A : Type@{i})
: In@{u a i} O (O_reflector@{u a i} O A).
admit.
Defined.
Definition inO_equiv_inO@{u a i j k} (O : Modality@{u a}) (A : Type@{i}) (B : Type@{j})
(A_inO : In@{u a i} O A) (f : A -> B) (feq : IsEquiv f)
: In@{u a j} O B.
Proof.
simple refine (isequiv_commsq (to O A) (to O B) f
(O_ind_internal O A (fun _ => O_reflector O B) _ (fun a => to O B (f a))) _).
-
intros; apply O_inO.
-
intros a; refine (O_ind_beta_internal@{u a i j k} O A (fun _ => O_reflector O B) _ _ a).
-
apply A_inO.
-
simple refine (isequiv_adjointify _
(O_ind_internal O B (fun _ => O_reflector O A) _ (fun b => to O A (f^-1 b))) _ _);
intros x.
+
apply O_inO.
+
pattern x; refine (O_ind_internal O B _ _ _ x); intros.
*
apply minO_pathsO.
*
simpl; admit.
+
pattern x; refine (O_ind_internal O A _ _ _ x); intros.
*
apply minO_pathsO.
*
simpl; admit.
Defined.
End EasyModalities_to_Modalities.
Module Modalities_Theory (Os : Modalities).
Export Os.
Module Export Os_ReflectiveSubuniverses
:= Modalities_to_ReflectiveSubuniverses Os.
Module Export RSU
:= ReflectiveSubuniverses_Theory Os_ReflectiveSubuniverses.
Module Export Coercions.
Coercion modality_to_reflective_subuniverse
:= idmap : Modality -> ReflectiveSubuniverse.
End Coercions.
Class IsConnected (O : Modality@{u a}) (A : Type@{i})
:= isconnected_contr_O : IsTrunc@{i} -2 (O A).
Class IsConnMap (O : Modality@{u a})
{A : Type@{i}} {B : Type@{j}} (f : A -> B)
:= isconnected_hfiber_conn_map
: forall b:B, IsConnected@{u a k} O (hfiber@{i j} f b).
End Modalities_Theory.
Private Inductive Trunc (n : trunc_index) (A :Type) : Type :=
tr : A -> Trunc n A.
Arguments tr {n A} a.
Global Instance istrunc_truncation (n : trunc_index) (A : Type@{i})
: IsTrunc@{j} n (Trunc@{i} n A).
Admitted.
Definition Trunc_ind {n A}
(P : Trunc n A -> Type) {Pt : forall aa, IsTrunc n (P aa)}
: (forall a, P (tr a)) -> (forall aa, P aa)
:= (fun f aa => match aa with tr a => fun _ => f a end Pt).
Definition Truncation_Modality := trunc_index.
Module Truncation_Modalities <: Modalities.
Definition Modality : Type2@{u a} := Truncation_Modality.
Definition O_reflector (n : Modality@{u u'}) A := Trunc n A.
Definition In (n : Modality@{u u'}) A := IsTrunc n A.
Definition O_inO (n : Modality@{u u'}) A : In n (O_reflector n A).
admit.
Defined.
Definition to (n : Modality@{u u'}) A := @tr n A.
Definition inO_equiv_inO (n : Modality@{u u'})
(A : Type@{i}) (B : Type@{j}) Atr f feq
: let gei := ((fun x => x) : Type@{i} -> Type@{k}) in
let gej := ((fun x => x) : Type@{j} -> Type@{k}) in
In n B
:= @trunc_equiv A B f n Atr feq.
Definition hprop_inO `{Funext} (n : Modality@{u u'}) A
: IsHProp (In n A).
admit.
Defined.
End Truncation_Modalities.
Module Import TrM := Modalities_Theory Truncation_Modalities.
Definition merely (A : Type@{i}) : hProp := BuildhProp (Trunc -1 A).
Notation IsSurjection := (IsConnMap -1).
Definition BuildIsSurjection {A B} (f : A -> B) :
(forall b, merely (hfiber f b)) -> IsSurjection f.
admit.
Defined.
Ltac strip_truncations :=
progress repeat match goal with
| [ T : _ |- _ ]
=> revert_opaque T;
refine (@Trunc_ind _ _ _ _ _);
[];
intro T
end.
Local Open Scope trunc_scope.
Global Instance conn_pointed_type {n : trunc_index} {A : Type} (a0:A)
`{IsConnMap n _ _ (unit_name a0)} : IsConnected n.+1 A | 1000.
admit.
Defined.
Definition loops (A : pType) : pType :=
Build_pType (point A = point A) idpath.
Record pMap (A B : pType) :=
{ pointed_fun : A -> B ;
point_eq : pointed_fun (point A) = point B }.
Arguments point_eq {A B} f : rename.
Coercion pointed_fun : pMap >-> Funclass.
Infix "->*" := pMap (at level 99) : pointed_scope.
Local Open Scope pointed_scope.
Definition pmap_compose {A B C : pType}
(g : B ->* C) (f : A ->* B)
: A ->* C
:= Build_pMap A C (g o f)
(ap g (point_eq f) @ point_eq g).
Record pHomotopy {A B : pType} (f g : pMap A B) :=
{ pointed_htpy : f == g ;
point_htpy : pointed_htpy (point A) @ point_eq g = point_eq f }.
Arguments pointed_htpy {A B f g} p x.
Infix "==*" := pHomotopy (at level 70, no associativity) : pointed_scope.
Definition loops_functor {A B : pType} (f : A ->* B)
: (loops A) ->* (loops B).
Proof.
refine (Build_pMap (loops A) (loops B)
(fun p => (point_eq f)^ @ (ap f p @ point_eq f)) _).
apply moveR_Vp; simpl.
refine (concat_1p _ @ (concat_p1 _)^).
Defined.
Definition loops_functor_compose {A B C : pType}
(g : B ->* C) (f : A ->* B)
: (loops_functor (pmap_compose g f))
==* (pmap_compose (loops_functor g) (loops_functor f)).
admit.
Defined.
Local Open Scope path_scope.
Record ooGroup :=
{ classifying_space : pType@{i} ;
isconn_classifying_space : IsConnected@{u a i} 0 classifying_space
}.
Local Notation B := classifying_space.
Definition group_type (G : ooGroup) : Type
:= point (B G) = point (B G).
Coercion group_type : ooGroup >-> Sortclass.
Definition group_loops (X : pType)
: ooGroup.
Proof.
pose (x0 := point X);
pose (BG := (Build_pType
{ x:X & merely (x = point X) }
(existT (fun x:X => merely (x = point X)) x0 (tr 1)))).
cut (IsConnected 0 BG).
{
exact (Build_ooGroup BG).
}
cut (IsSurjection (unit_name (point BG))).
{
intros; refine (conn_pointed_type (point _)).
}
apply BuildIsSurjection; simpl; intros [x p].
strip_truncations; apply tr; exists tt.
apply path_sigma_hprop; simpl.
exact (p^).
Defined.
Definition loops_group (X : pType)
: loops X <~> group_loops X.
admit.
Defined.
Definition ooGroupHom (G H : ooGroup)
:= pMap (B G) (B H).
Definition grouphom_fun {G H} (phi : ooGroupHom G H) : G -> H
:= loops_functor phi.
Coercion grouphom_fun : ooGroupHom >-> Funclass.
Definition group_loops_functor
{X Y : pType} (f : pMap X Y)
: ooGroupHom (group_loops X) (group_loops Y).
Proof.
simple refine (Build_pMap _ _ _ _); simpl.
-
intros [x p].
exists (f x).
strip_truncations; apply tr.
exact (ap f p @ point_eq f).
-
apply path_sigma_hprop; simpl.
apply point_eq.
Defined.
Definition loops_functor_group
{X Y : pType} (f : pMap X Y)
: loops_functor (group_loops_functor f) o loops_group X
== loops_group Y o loops_functor f.
admit.
Defined.
Definition grouphom_compose {G H K : ooGroup}
(psi : ooGroupHom H K) (phi : ooGroupHom G H)
: ooGroupHom G K
:= pmap_compose psi phi.
Definition group_loops_functor_compose
{X Y Z : pType}
(psi : pMap Y Z) (phi : pMap X Y)
: grouphom_compose (group_loops_functor psi) (group_loops_functor phi)
== group_loops_functor (pmap_compose psi phi).
Proof.
intros g.
unfold grouphom_fun, grouphom_compose.
refine (pointed_htpy (loops_functor_compose _ _) g @ _).
pose (p := eisretr (loops_group X) g).
change (loops_functor (group_loops_functor psi)
(loops_functor (group_loops_functor phi) g)
= loops_functor (group_loops_functor
(pmap_compose psi phi)) g).
rewrite <- p.
Fail Timeout 1 Time rewrite !loops_functor_group.
(* 0.004 s in 8.5rc1, 8.677 s in 8.5 *)
Timeout 1 do 3 rewrite loops_functor_group.
Abort.
|