1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
|
(* -*- mode: coq; coq-prog-args: ("-R" "." "Fiat" "-top" "BooleanRecognizerMin" "-R" "." "Top") -*- *)
(* File reduced by coq-bug-finder from original input, then from 2475 lines to 729 lines, then from 746 lines to 658 lines, then from 675 lines to 658 lines *)
(* coqc version 8.5beta3 (November 2015) compiled on Nov 11 2015 18:23:0 with OCaml 4.01.0
coqtop version 8.5beta3 (November 2015) *)
(* Variable P : forall n m : nat, n = m -> Prop. *)
(* Axiom Prefl : forall n : nat, P n n eq_refl. *)
Axiom proof_admitted : False.
Tactic Notation "admit" := case proof_admitted.
Require Coq.Program.Program.
Require Coq.Strings.String.
Require Coq.omega.Omega.
Module Export Fiat_DOT_Common.
Module Export Fiat.
Module Common.
Import Coq.Lists.List.
Export Coq.Program.Program.
Global Set Implicit Arguments.
Global Coercion is_true : bool >-> Sortclass.
Coercion bool_of_sum {A B} (b : sum A B) : bool := if b then true else false.
Fixpoint ForallT {T} (P : T -> Type) (ls : list T) : Type
:= match ls return Type with
| nil => True
| x::xs => (P x * ForallT P xs)%type
end.
Fixpoint Forall_tails {T} (P : list T -> Type) (ls : list T) : Type
:= match ls with
| nil => P nil
| x::xs => (P (x::xs) * Forall_tails P xs)%type
end.
End Common.
End Fiat.
End Fiat_DOT_Common.
Module Export Fiat_DOT_Parsers_DOT_StringLike_DOT_Core.
Module Export Fiat.
Module Export Parsers.
Module Export StringLike.
Module Export Core.
Import Coq.Relations.Relation_Definitions.
Import Coq.Classes.Morphisms.
Local Coercion is_true : bool >-> Sortclass.
Module Export StringLike.
Class StringLike {Char : Type} :=
{
String :> Type;
is_char : String -> Char -> bool;
length : String -> nat;
take : nat -> String -> String;
drop : nat -> String -> String;
get : nat -> String -> option Char;
unsafe_get : nat -> String -> Char;
bool_eq : String -> String -> bool;
beq : relation String := fun x y => bool_eq x y
}.
Arguments StringLike : clear implicits.
Infix "=s" := (@beq _ _) (at level 70, no associativity) : type_scope.
Notation "s ~= [ ch ]" := (is_char s ch) (at level 70, no associativity) : string_like_scope.
Local Open Scope string_like_scope.
Class StringLikeProperties (Char : Type) `{StringLike Char} :=
{
singleton_unique : forall s ch ch', s ~= [ ch ] -> s ~= [ ch' ] -> ch = ch';
singleton_exists : forall s, length s = 1 -> exists ch, s ~= [ ch ];
get_0 : forall s ch, take 1 s ~= [ ch ] <-> get 0 s = Some ch;
get_S : forall n s, get (S n) s = get n (drop 1 s);
unsafe_get_correct : forall n s ch, get n s = Some ch -> unsafe_get n s = ch;
length_singleton : forall s ch, s ~= [ ch ] -> length s = 1;
bool_eq_char : forall s s' ch, s ~= [ ch ] -> s' ~= [ ch ] -> s =s s';
is_char_Proper :> Proper (beq ==> eq ==> eq) is_char;
length_Proper :> Proper (beq ==> eq) length;
take_Proper :> Proper (eq ==> beq ==> beq) take;
drop_Proper :> Proper (eq ==> beq ==> beq) drop;
bool_eq_Equivalence :> Equivalence beq;
bool_eq_empty : forall str str', length str = 0 -> length str' = 0 -> str =s str';
take_short_length : forall str n, n <= length str -> length (take n str) = n;
take_long : forall str n, length str <= n -> take n str =s str;
take_take : forall str n m, take n (take m str) =s take (min n m) str;
drop_length : forall str n, length (drop n str) = length str - n;
drop_0 : forall str, drop 0 str =s str;
drop_drop : forall str n m, drop n (drop m str) =s drop (n + m) str;
drop_take : forall str n m, drop n (take m str) =s take (m - n) (drop n str);
take_drop : forall str n m, take n (drop m str) =s drop m (take (n + m) str);
bool_eq_from_get : forall str str', (forall n, get n str = get n str') -> str =s str'
}.
Global Arguments StringLikeProperties _ {_}.
End StringLike.
End Core.
End StringLike.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_StringLike_DOT_Core.
Module Export Fiat_DOT_Parsers_DOT_ContextFreeGrammar_DOT_Core.
Module Export Fiat.
Module Export Parsers.
Module Export ContextFreeGrammar.
Module Export Core.
Import Coq.Strings.String.
Import Coq.Lists.List.
Export Fiat.Parsers.StringLike.Core.
Section cfg.
Context {Char : Type}.
Section definitions.
Inductive item :=
| Terminal (_ : Char)
| NonTerminal (_ : string).
Definition production := list item.
Definition productions := list production.
Record grammar :=
{
Start_symbol :> string;
Lookup :> string -> productions;
Start_productions :> productions := Lookup Start_symbol;
Valid_nonterminals : list string;
Valid_productions : list productions := map Lookup Valid_nonterminals
}.
End definitions.
End cfg.
Arguments item _ : clear implicits.
Arguments production _ : clear implicits.
Arguments productions _ : clear implicits.
Arguments grammar _ : clear implicits.
End Core.
End ContextFreeGrammar.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_ContextFreeGrammar_DOT_Core.
Module Export Fiat_DOT_Parsers_DOT_BaseTypes.
Module Export Fiat.
Module Export Parsers.
Module Export BaseTypes.
Import Coq.Arith.Wf_nat.
Local Coercion is_true : bool >-> Sortclass.
Section recursive_descent_parser.
Context {Char} {HSL : StringLike Char} {G : grammar Char}.
Class parser_computational_predataT :=
{ nonterminals_listT : Type;
nonterminal_carrierT : Type;
of_nonterminal : String.string -> nonterminal_carrierT;
to_nonterminal : nonterminal_carrierT -> String.string;
initial_nonterminals_data : nonterminals_listT;
nonterminals_length : nonterminals_listT -> nat;
is_valid_nonterminal : nonterminals_listT -> nonterminal_carrierT -> bool;
remove_nonterminal : nonterminals_listT -> nonterminal_carrierT -> nonterminals_listT }.
Class parser_removal_dataT' `{predata : parser_computational_predataT} :=
{ nonterminals_listT_R : nonterminals_listT -> nonterminals_listT -> Prop
:= ltof _ nonterminals_length;
nonterminals_length_zero : forall ls,
nonterminals_length ls = 0
-> forall nt, is_valid_nonterminal ls nt = false;
remove_nonterminal_dec : forall ls nonterminal,
is_valid_nonterminal ls nonterminal
-> nonterminals_listT_R (remove_nonterminal ls nonterminal) ls;
remove_nonterminal_noninc : forall ls nonterminal,
~nonterminals_listT_R ls (remove_nonterminal ls nonterminal);
initial_nonterminals_correct : forall nonterminal,
is_valid_nonterminal initial_nonterminals_data (of_nonterminal nonterminal) <-> List.In nonterminal (Valid_nonterminals G);
initial_nonterminals_correct' : forall nonterminal,
is_valid_nonterminal initial_nonterminals_data nonterminal <-> List.In (to_nonterminal nonterminal) (Valid_nonterminals G);
to_of_nonterminal : forall nonterminal,
List.In nonterminal (Valid_nonterminals G)
-> to_nonterminal (of_nonterminal nonterminal) = nonterminal;
of_to_nonterminal : forall nonterminal,
is_valid_nonterminal initial_nonterminals_data nonterminal
-> of_nonterminal (to_nonterminal nonterminal) = nonterminal;
ntl_wf : well_founded nonterminals_listT_R
:= well_founded_ltof _ _;
remove_nonterminal_1
: forall ls ps ps',
is_valid_nonterminal (remove_nonterminal ls ps) ps'
-> is_valid_nonterminal ls ps';
remove_nonterminal_2
: forall ls ps ps',
is_valid_nonterminal (remove_nonterminal ls ps) ps' = false
<-> is_valid_nonterminal ls ps' = false \/ ps = ps' }.
Class split_dataT :=
{ split_string_for_production
: item Char -> production Char -> String -> list nat }.
Class boolean_parser_dataT :=
{ predata :> parser_computational_predataT;
split_data :> split_dataT }.
End recursive_descent_parser.
End BaseTypes.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_BaseTypes.
Module Export Fiat_DOT_Common_DOT_List_DOT_Operations.
Module Export Fiat.
Module Export Common.
Module Export List.
Module Export Operations.
Import Coq.Lists.List.
Module Export List.
Section InT.
Context {A : Type} (a : A).
Fixpoint InT (ls : list A) : Set
:= match ls return Set with
| nil => False
| b :: m => (b = a) + InT m
end%type.
End InT.
End List.
End Operations.
End List.
End Common.
End Fiat.
End Fiat_DOT_Common_DOT_List_DOT_Operations.
Module Export Fiat_DOT_Parsers_DOT_StringLike_DOT_Properties.
Module Export Fiat.
Module Export Parsers.
Module Export StringLike.
Module Export Properties.
Section String.
Context {Char} {HSL : StringLike Char} {HSLP : StringLikeProperties Char}.
Lemma take_length {str n}
: length (take n str) = min n (length str).
admit.
Defined.
End String.
End Properties.
End StringLike.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_StringLike_DOT_Properties.
Module Export Fiat_DOT_Parsers_DOT_ContextFreeGrammar_DOT_Properties.
Module Export Fiat.
Module Export Parsers.
Module Export ContextFreeGrammar.
Module Export Properties.
Local Open Scope list_scope.
Definition production_is_reachableT {Char} (G : grammar Char) (p : production Char)
:= { nt : _
& { prefix : _
& List.In nt (Valid_nonterminals G)
* List.InT
(prefix ++ p)
(Lookup G nt) } }%type.
End Properties.
End ContextFreeGrammar.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_ContextFreeGrammar_DOT_Properties.
Module Export Fiat_DOT_Parsers_DOT_MinimalParse.
Module Export Fiat.
Module Export Parsers.
Module Export MinimalParse.
Import Coq.Lists.List.
Import Fiat.Parsers.ContextFreeGrammar.Core.
Local Coercion is_true : bool >-> Sortclass.
Local Open Scope string_like_scope.
Section cfg.
Context {Char} {HSL : StringLike Char} {G : grammar Char}.
Context {predata : @parser_computational_predataT}
{rdata' : @parser_removal_dataT' _ G predata}.
Inductive minimal_parse_of
: forall (len0 : nat) (valid : nonterminals_listT)
(str : String),
productions Char -> Type :=
| MinParseHead : forall len0 valid str pat pats,
@minimal_parse_of_production len0 valid str pat
-> @minimal_parse_of len0 valid str (pat::pats)
| MinParseTail : forall len0 valid str pat pats,
@minimal_parse_of len0 valid str pats
-> @minimal_parse_of len0 valid str (pat::pats)
with minimal_parse_of_production
: forall (len0 : nat) (valid : nonterminals_listT)
(str : String),
production Char -> Type :=
| MinParseProductionNil : forall len0 valid str,
length str = 0
-> @minimal_parse_of_production len0 valid str nil
| MinParseProductionCons : forall len0 valid str n pat pats,
length str <= len0
-> @minimal_parse_of_item len0 valid (take n str) pat
-> @minimal_parse_of_production len0 valid (drop n str) pats
-> @minimal_parse_of_production len0 valid str (pat::pats)
with minimal_parse_of_item
: forall (len0 : nat) (valid : nonterminals_listT)
(str : String),
item Char -> Type :=
| MinParseTerminal : forall len0 valid str ch,
str ~= [ ch ]
-> @minimal_parse_of_item len0 valid str (Terminal ch)
| MinParseNonTerminal
: forall len0 valid str (nt : String.string),
@minimal_parse_of_nonterminal len0 valid str nt
-> @minimal_parse_of_item len0 valid str (NonTerminal nt)
with minimal_parse_of_nonterminal
: forall (len0 : nat) (valid : nonterminals_listT)
(str : String),
String.string -> Type :=
| MinParseNonTerminalStrLt
: forall len0 valid (nt : String.string) str,
length str < len0
-> is_valid_nonterminal initial_nonterminals_data (of_nonterminal nt)
-> @minimal_parse_of (length str) initial_nonterminals_data str (Lookup G nt)
-> @minimal_parse_of_nonterminal len0 valid str nt
| MinParseNonTerminalStrEq
: forall len0 str valid nonterminal,
length str = len0
-> is_valid_nonterminal initial_nonterminals_data (of_nonterminal nonterminal)
-> is_valid_nonterminal valid (of_nonterminal nonterminal)
-> @minimal_parse_of len0 (remove_nonterminal valid (of_nonterminal nonterminal)) str (Lookup G nonterminal)
-> @minimal_parse_of_nonterminal len0 valid str nonterminal.
End cfg.
End MinimalParse.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_MinimalParse.
Module Export Fiat_DOT_Parsers_DOT_CorrectnessBaseTypes.
Module Export Fiat.
Module Export Parsers.
Module Export CorrectnessBaseTypes.
Import Coq.Lists.List.
Import Fiat.Parsers.ContextFreeGrammar.Core.
Import Fiat_DOT_Common.Fiat.Common.
Section general.
Context {Char} {HSL : StringLike Char} {G : grammar Char}.
Definition split_list_completeT_for {data : @parser_computational_predataT}
{len0 valid}
(it : item Char) (its : production Char)
(str : String)
(pf : length str <= len0)
(split_list : list nat)
:= ({ n : nat
& (minimal_parse_of_item (G := G) (predata := data) len0 valid (take n str) it)
* (minimal_parse_of_production (G := G) len0 valid (drop n str) its) }%type)
-> ({ n : nat
& (In (min (length str) n) (map (min (length str)) split_list))
* (minimal_parse_of_item (G := G) len0 valid (take n str) it)
* (minimal_parse_of_production (G := G) len0 valid (drop n str) its) }%type).
Definition split_list_completeT {data : @parser_computational_predataT}
(splits : item Char -> production Char -> String -> list nat)
:= forall len0 valid str (pf : length str <= len0) nt,
is_valid_nonterminal initial_nonterminals_data (of_nonterminal nt)
-> ForallT
(Forall_tails
(fun prod
=> match prod return Type with
| nil => True
| it::its
=> @split_list_completeT_for data len0 valid it its str pf (splits it its str)
end))
(Lookup G nt).
Class boolean_parser_completeness_dataT' {data : boolean_parser_dataT} :=
{ split_string_for_production_complete
: split_list_completeT split_string_for_production }.
End general.
End CorrectnessBaseTypes.
End Parsers.
End Fiat.
End Fiat_DOT_Parsers_DOT_CorrectnessBaseTypes.
Module Export Fiat.
Module Export Parsers.
Module Export ContextFreeGrammar.
Module Export Valid.
Export Fiat.Parsers.StringLike.Core.
Section cfg.
Context {Char : Type} {HSL : StringLike Char} (G : grammar Char)
{predata : parser_computational_predataT}.
Definition item_valid (it : item Char)
:= match it with
| Terminal _ => True
| NonTerminal nt' => is_true (is_valid_nonterminal initial_nonterminals_data (of_nonterminal nt'))
end.
Definition production_valid pat
:= List.Forall item_valid pat.
Definition productions_valid pats
:= List.Forall production_valid pats.
Definition grammar_valid
:= forall nt,
List.In nt (Valid_nonterminals G)
-> productions_valid (Lookup G nt).
End cfg.
End Valid.
Section app.
Context {Char : Type} {HSL : StringLike Char} (G : grammar Char)
{predata : parser_computational_predataT}.
Lemma hd_production_valid
(it : item Char)
(its : production Char)
(H : production_valid (it :: its))
: item_valid it.
admit.
Defined.
Lemma production_valid_cons
(it : item Char)
(its : production Char)
(H : production_valid (it :: its))
: production_valid its.
admit.
Defined.
End app.
Import Coq.Lists.List.
Import Coq.omega.Omega.
Import Fiat_DOT_Common.Fiat.Common.
Import Fiat.Parsers.ContextFreeGrammar.Valid.
Local Open Scope string_like_scope.
Section recursive_descent_parser.
Context {Char} {HSL : StringLike Char} {HSLP : StringLikeProperties Char} (G : grammar Char).
Context {data : @boolean_parser_dataT Char _}
{cdata : @boolean_parser_completeness_dataT' Char _ G data}
{rdata : @parser_removal_dataT' _ G _}
{gvalid : grammar_valid G}.
Local Notation dec T := (T + (T -> False))%type (only parsing).
Local Notation iffT x y := ((x -> y) * (y -> x))%type (only parsing).
Lemma dec_prod {A B} (HA : dec A) (HB : dec B) : dec (A * B).
admit.
Defined.
Lemma dec_In {A} {P : A -> Type} (HA : forall a, dec (P a)) ls
: dec { a : _ & (In a ls * P a) }.
admit.
Defined.
Section item.
Context {len0 valid}
(str : String)
(str_matches_nonterminal'
: nonterminal_carrierT -> bool)
(str_matches_nonterminal
: forall nt : nonterminal_carrierT,
dec (minimal_parse_of_nonterminal (G := G) len0 valid str (to_nonterminal nt))).
Section valid.
Context (Hmatches
: forall nt,
is_valid_nonterminal initial_nonterminals_data nt
-> str_matches_nonterminal nt = str_matches_nonterminal' nt :> bool)
(it : item Char)
(Hvalid : item_valid it).
Definition parse_item'
: dec (minimal_parse_of_item (G := G) len0 valid str it).
Proof.
clear Hvalid.
refine (match it return dec (minimal_parse_of_item len0 valid str it) with
| Terminal ch => if Sumbool.sumbool_of_bool (str ~= [ ch ])
then inl (MinParseTerminal _ _ _ _ _)
else inr (fun _ => !)
| NonTerminal nt => if str_matches_nonterminal (of_nonterminal nt)
then inl (MinParseNonTerminal _)
else inr (fun _ => !)
end);
clear str_matches_nonterminal Hmatches;
admit.
Defined.
End valid.
End item.
Context {len0 valid}
(parse_nonterminal
: forall (str : String) (len : nat) (Hlen : length str = len) (pf : len <= len0) (nt : nonterminal_carrierT),
dec (minimal_parse_of_nonterminal (G := G) len0 valid str (to_nonterminal nt))).
Lemma dec_in_helper {ls it its str}
: iffT {n0 : nat &
(In (min (length str) n0) (map (min (length str)) ls) *
minimal_parse_of_item (G := G) len0 valid (take n0 str) it *
minimal_parse_of_production (G := G) len0 valid (drop n0 str) its)%type}
{n0 : nat &
(In n0 ls *
(minimal_parse_of_item (G := G) len0 valid (take n0 str) it *
minimal_parse_of_production (G := G) len0 valid (drop n0 str) its))%type}.
admit.
Defined.
Lemma parse_production'_helper {str it its} (pf : length str <= len0)
: dec {n0 : nat &
(minimal_parse_of_item (G := G) len0 valid (take n0 str) it *
minimal_parse_of_production (G := G) len0 valid (drop n0 str) its)%type}
-> dec (minimal_parse_of_production (G := G) len0 valid str (it :: its)).
admit.
Defined.
Local Ltac t_parse_production_for := repeat
match goal with
| [ H : (beq_nat _ _) = true |- _ ] => apply EqNat.beq_nat_true in H
| _ => progress subst
| _ => solve [ constructor; assumption ]
| [ H : minimal_parse_of_production _ _ _ nil |- _ ] => (inversion H; clear H)
| [ H : minimal_parse_of_production _ _ _ (_::_) |- _ ] => (inversion H; clear H)
| [ H : ?x = 0, H' : context[?x] |- _ ] => rewrite H in H'
| _ => progress simpl in *
| _ => discriminate
| [ H : forall x, (_ * _)%type -> _ |- _ ] => specialize (fun x y z => H x (y, z))
| _ => solve [ eauto with nocore ]
| _ => solve [ apply Min.min_case_strong; omega ]
| _ => omega
| [ H : production_valid (_::_) |- _ ]
=> let H' := fresh in
pose proof H as H';
apply production_valid_cons in H;
apply hd_production_valid in H'
end.
Definition parse_production'_for
(splits : item Char -> production Char -> String -> list nat)
(Hsplits : forall str it its (Hreachable : production_is_reachableT G (it::its)) pf', split_list_completeT_for (len0 := len0) (G := G) (valid := valid) it its str pf' (splits it its str))
(str : String)
(len : nat)
(Hlen : length str = len)
(pf : len <= len0)
(prod : production Char)
(Hreachable : production_is_reachableT G prod)
: dec (minimal_parse_of_production (G := G) len0 valid str prod).
Proof.
revert prod Hreachable str len Hlen pf.
refine
((fun pf_helper =>
list_rect
(fun prod =>
forall (Hreachable : production_is_reachableT G prod)
(str : String)
(len : nat)
(Hlen : length str = len)
(pf : len <= len0),
dec (minimal_parse_of_production (G := G) len0 valid str prod))
(
fun Hreachable str len Hlen pf
=> match Utils.dec (beq_nat len 0) with
| left H => inl _
| right H => inr (fun p => _)
end)
(fun it its parse_production' Hreachable str len Hlen pf
=> parse_production'_helper
_
(let parse_item := (fun n pf => parse_item' (parse_nonterminal (take n str) (len := min n len) (eq_trans take_length (f_equal (min _) Hlen)) pf) it) in
let parse_item := (fun n => parse_item n (Min.min_case_strong n len (fun k => k <= len0) (fun Hlen => (Nat.le_trans _ _ _ Hlen pf)) (fun Hlen => pf))) in
let parse_production := (fun n => parse_production' (pf_helper it its Hreachable) (drop n str) (len - n) (eq_trans (drop_length _ _) (f_equal (fun x => x - _) Hlen)) (Nat.le_trans _ _ _ (Nat.le_sub_l _ _) pf)) in
match dec_In
(fun n => dec_prod (parse_item n) (parse_production n))
(splits it its str)
with
| inl p => inl (existT _ (projT1 p) (snd (projT2 p)))
| inr p
=> let pf' := (Nat.le_trans _ _ _ (Nat.eq_le_incl _ _ Hlen) pf) in
let H := (_ : split_list_completeT_for (G := G) (len0 := len0) (valid := valid) it its str pf' (splits it its str)) in
inr (fun p' => p (fst dec_in_helper (H p')))
end)
)) _);
[ clear parse_nonterminal Hsplits splits rdata cdata
| clear parse_nonterminal Hsplits splits rdata cdata
| ..
| admit ].
abstract t_parse_production_for.
abstract t_parse_production_for.
abstract t_parse_production_for.
abstract t_parse_production_for.
Defined.
|