1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
|
(* Lifted from https://coq.inria.fr/bugs/show_bug.cgi?id=4187 *)
(* File reduced by coq-bug-finder from original input, then from 715 lines to 696 lines *)
(* coqc version 8.4pl5 (December 2014) compiled on Dec 28 2014 03:23:16 with OCaml 4.01.0
coqtop version 8.4pl5 (December 2014) *)
Set Asymmetric Patterns.
Axiom proof_admitted : False.
Tactic Notation "admit" := case proof_admitted.
Require Import Coq.Lists.List.
Require Import Coq.Setoids.Setoid.
Require Import Coq.Numbers.Natural.Peano.NPeano.
Global Set Implicit Arguments.
Global Generalizable All Variables.
Coercion is_true : bool >-> Sortclass.
Coercion bool_of_sumbool {A B} (x : {A} + {B}) : bool := if x then true else false.
Fixpoint ForallT {T} (P : T -> Type) (ls : list T) : Type
:= match ls return Type with
| nil => True
| x::xs => (P x * ForallT P xs)%type
end.
Fixpoint Forall_tails {T} (P : list T -> Type) (ls : list T) : Type
:= match ls with
| nil => P nil
| x::xs => (P (x::xs) * Forall_tails P xs)%type
end.
Module Export ADTSynthesis_DOT_Common_DOT_Wf.
Module Export ADTSynthesis.
Module Export Common.
Module Export Wf.
Section wf.
Section wf_prod.
Context A B (RA : relation A) (RB : relation B).
Definition prod_relation : relation (A * B).
exact (fun ab a'b' =>
RA (fst ab) (fst a'b') \/ (fst a'b' = fst ab /\ RB (snd ab) (snd a'b'))).
Defined.
Fixpoint well_founded_prod_relation_helper
a b
(wf_A : Acc RA a) (wf_B : well_founded RB) {struct wf_A}
: Acc prod_relation (a, b)
:= match wf_A with
| Acc_intro fa => (fix wf_B_rec b' (wf_B' : Acc RB b') : Acc prod_relation (a, b')
:= Acc_intro
_
(fun ab =>
match ab as ab return prod_relation ab (a, b') -> Acc prod_relation ab with
| (a'', b'') =>
fun pf =>
match pf with
| or_introl pf'
=> @well_founded_prod_relation_helper
_ _
(fa _ pf')
wf_B
| or_intror (conj pfa pfb)
=> match wf_B' with
| Acc_intro fb
=> eq_rect
_
(fun a'' => Acc prod_relation (a'', b''))
(wf_B_rec _ (fb _ pfb))
_
pfa
end
end
end)
) b (wf_B b)
end.
Definition well_founded_prod_relation : well_founded RA -> well_founded RB -> well_founded prod_relation.
Proof.
intros wf_A wf_B [a b]; hnf in *.
apply well_founded_prod_relation_helper; auto.
Defined.
End wf_prod.
Section wf_projT1.
Context A (B : A -> Type) (R : relation A).
Definition projT1_relation : relation (sigT B).
exact (fun ab a'b' =>
R (projT1 ab) (projT1 a'b')).
Defined.
Definition well_founded_projT1_relation : well_founded R -> well_founded projT1_relation.
Proof.
intros wf [a b]; hnf in *.
induction (wf a) as [a H IH].
constructor.
intros y r.
specialize (IH _ r (projT2 y)).
destruct y.
exact IH.
Defined.
End wf_projT1.
End wf.
Section Fix3.
Context A (B : A -> Type) (C : forall a, B a -> Type) (D : forall a b, C a b -> Type)
(R : A -> A -> Prop) (Rwf : well_founded R)
(P : forall a b c, D a b c -> Type)
(F : forall x : A, (forall y : A, R y x -> forall b c d, P y b c d) -> forall b c d, P x b c d).
Definition Fix3 a b c d : @P a b c d.
exact (@Fix { a : A & { b : B a & { c : C b & D c } } }
(fun x y => R (projT1 x) (projT1 y))
(well_founded_projT1_relation Rwf)
(fun abcd => P (projT2 (projT2 (projT2 abcd))))
(fun x f => @F (projT1 x) (fun y r b c d => f (existT _ y (existT _ b (existT _ c d))) r) _ _ _)
(existT _ a (existT _ b (existT _ c d)))).
Defined.
End Fix3.
End Wf.
End Common.
End ADTSynthesis.
End ADTSynthesis_DOT_Common_DOT_Wf.
Module Export ADTSynthesis_DOT_Parsers_DOT_StringLike_DOT_Core.
Module Export ADTSynthesis.
Module Export Parsers.
Module Export StringLike.
Module Export Core.
Import Coq.Setoids.Setoid.
Import Coq.Classes.Morphisms.
Module Export StringLike.
Class StringLike {Char : Type} :=
{
String :> Type;
is_char : String -> Char -> bool;
length : String -> nat;
take : nat -> String -> String;
drop : nat -> String -> String;
bool_eq : String -> String -> bool;
beq : relation String := fun x y => bool_eq x y
}.
Arguments StringLike : clear implicits.
Infix "=s" := (@beq _ _) (at level 70, no associativity) : type_scope.
Notation "s ~= [ ch ]" := (is_char s ch) (at level 70, no associativity) : string_like_scope.
Local Open Scope string_like_scope.
Definition str_le `{StringLike Char} (s1 s2 : String)
:= length s1 < length s2 \/ s1 =s s2.
Infix "≤s" := str_le (at level 70, right associativity).
Class StringLikeProperties (Char : Type) `{StringLike Char} :=
{
singleton_unique : forall s ch ch', s ~= [ ch ] -> s ~= [ ch' ] -> ch = ch';
length_singleton : forall s ch, s ~= [ ch ] -> length s = 1;
bool_eq_char : forall s s' ch, s ~= [ ch ] -> s' ~= [ ch ] -> s =s s';
is_char_Proper :> Proper (beq ==> eq ==> eq) is_char;
length_Proper :> Proper (beq ==> eq) length;
take_Proper :> Proper (eq ==> beq ==> beq) take;
drop_Proper :> Proper (eq ==> beq ==> beq) drop;
bool_eq_Equivalence :> Equivalence beq;
bool_eq_empty : forall str str', length str = 0 -> length str' = 0 -> str =s str';
take_short_length : forall str n, n <= length str -> length (take n str) = n;
take_long : forall str n, length str <= n -> take n str =s str;
take_take : forall str n m, take n (take m str) =s take (min n m) str;
drop_length : forall str n, length (drop n str) = length str - n;
drop_0 : forall str, drop 0 str =s str;
drop_drop : forall str n m, drop n (drop m str) =s drop (n + m) str;
drop_take : forall str n m, drop n (take m str) =s take (m - n) (drop n str);
take_drop : forall str n m, take n (drop m str) =s drop m (take (n + m) str)
}.
Arguments StringLikeProperties Char {_}.
End StringLike.
End Core.
End StringLike.
End Parsers.
End ADTSynthesis.
End ADTSynthesis_DOT_Parsers_DOT_StringLike_DOT_Core.
Module Export ADTSynthesis.
Module Export Parsers.
Module Export ContextFreeGrammar.
Require Import Coq.Strings.String.
Require Import Coq.Lists.List.
Export ADTSynthesis.Parsers.StringLike.Core.
Import ADTSynthesis.Common.
Local Open Scope string_like_scope.
Section cfg.
Context {Char : Type}.
Section definitions.
Inductive item :=
| Terminal (_ : Char)
| NonTerminal (_ : string).
Definition production := list item.
Definition productions := list production.
Record grammar :=
{
Start_symbol :> string;
Lookup :> string -> productions;
Start_productions :> productions := Lookup Start_symbol;
Valid_nonterminals : list string;
Valid_productions : list productions := map Lookup Valid_nonterminals
}.
End definitions.
Section parse.
Context {HSL : StringLike Char}.
Variable G : grammar.
Inductive parse_of (str : String) : productions -> Type :=
| ParseHead : forall pat pats, parse_of_production str pat
-> parse_of str (pat::pats)
| ParseTail : forall pat pats, parse_of str pats
-> parse_of str (pat::pats)
with parse_of_production (str : String) : production -> Type :=
| ParseProductionNil : length str = 0 -> parse_of_production str nil
| ParseProductionCons : forall n pat pats,
parse_of_item (take n str) pat
-> parse_of_production (drop n str) pats
-> parse_of_production str (pat::pats)
with parse_of_item (str : String) : item -> Type :=
| ParseTerminal : forall ch, str ~= [ ch ] -> parse_of_item str (Terminal ch)
| ParseNonTerminal : forall nt, parse_of str (Lookup G nt)
-> parse_of_item str (NonTerminal nt).
End parse.
End cfg.
Arguments item _ : clear implicits.
Arguments production _ : clear implicits.
Arguments productions _ : clear implicits.
Arguments grammar _ : clear implicits.
End ContextFreeGrammar.
Module Export BaseTypes.
Section recursive_descent_parser.
Class parser_computational_predataT :=
{ nonterminals_listT : Type;
initial_nonterminals_data : nonterminals_listT;
is_valid_nonterminal : nonterminals_listT -> String.string -> bool;
remove_nonterminal : nonterminals_listT -> String.string -> nonterminals_listT;
nonterminals_listT_R : nonterminals_listT -> nonterminals_listT -> Prop;
remove_nonterminal_dec : forall ls nonterminal,
is_valid_nonterminal ls nonterminal
-> nonterminals_listT_R (remove_nonterminal ls nonterminal) ls;
ntl_wf : well_founded nonterminals_listT_R }.
Class parser_removal_dataT' `{predata : parser_computational_predataT} :=
{ remove_nonterminal_1
: forall ls ps ps',
is_valid_nonterminal (remove_nonterminal ls ps) ps'
-> is_valid_nonterminal ls ps';
remove_nonterminal_2
: forall ls ps ps',
is_valid_nonterminal (remove_nonterminal ls ps) ps' = false
<-> is_valid_nonterminal ls ps' = false \/ ps = ps' }.
End recursive_descent_parser.
End BaseTypes.
Import Coq.Lists.List.
Import ADTSynthesis.Parsers.ContextFreeGrammar.
Local Open Scope string_like_scope.
Section cfg.
Context {Char} {HSL : StringLike Char} {G : grammar Char}.
Context {predata : @parser_computational_predataT}
{rdata' : @parser_removal_dataT' predata}.
Inductive minimal_parse_of
: forall (str0 : String) (valid : nonterminals_listT)
(str : String),
productions Char -> Type :=
| MinParseHead : forall str0 valid str pat pats,
@minimal_parse_of_production str0 valid str pat
-> @minimal_parse_of str0 valid str (pat::pats)
| MinParseTail : forall str0 valid str pat pats,
@minimal_parse_of str0 valid str pats
-> @minimal_parse_of str0 valid str (pat::pats)
with minimal_parse_of_production
: forall (str0 : String) (valid : nonterminals_listT)
(str : String),
production Char -> Type :=
| MinParseProductionNil : forall str0 valid str,
length str = 0
-> @minimal_parse_of_production str0 valid str nil
| MinParseProductionCons : forall str0 valid str n pat pats,
str ≤s str0
-> @minimal_parse_of_item str0 valid (take n str) pat
-> @minimal_parse_of_production str0 valid (drop n str) pats
-> @minimal_parse_of_production str0 valid str (pat::pats)
with minimal_parse_of_item
: forall (str0 : String) (valid : nonterminals_listT)
(str : String),
item Char -> Type :=
| MinParseTerminal : forall str0 valid str ch,
str ~= [ ch ]
-> @minimal_parse_of_item str0 valid str (Terminal ch)
| MinParseNonTerminal
: forall str0 valid str (nt : String.string),
@minimal_parse_of_nonterminal str0 valid str nt
-> @minimal_parse_of_item str0 valid str (NonTerminal nt)
with minimal_parse_of_nonterminal
: forall (str0 : String) (valid : nonterminals_listT)
(str : String),
String.string -> Type :=
| MinParseNonTerminalStrLt
: forall str0 valid (nt : String.string) str,
length str < length str0
-> is_valid_nonterminal initial_nonterminals_data nt
-> @minimal_parse_of str initial_nonterminals_data str (Lookup G nt)
-> @minimal_parse_of_nonterminal str0 valid str nt
| MinParseNonTerminalStrEq
: forall str0 str valid nonterminal,
str =s str0
-> is_valid_nonterminal initial_nonterminals_data nonterminal
-> is_valid_nonterminal valid nonterminal
-> @minimal_parse_of str0 (remove_nonterminal valid nonterminal) str (Lookup G nonterminal)
-> @minimal_parse_of_nonterminal str0 valid str nonterminal.
End cfg.
Import ADTSynthesis.Common.
Section general.
Context {Char} {HSL : StringLike Char} {G : grammar Char}.
Class boolean_parser_dataT :=
{ predata :> parser_computational_predataT;
split_string_for_production
: item Char -> production Char -> String -> list nat }.
Global Coercion predata : boolean_parser_dataT >-> parser_computational_predataT.
Definition split_list_completeT `{data : @parser_computational_predataT}
{str0 valid}
(it : item Char) (its : production Char)
(str : String)
(pf : str ≤s str0)
(split_list : list nat)
:= ({ n : nat
& (minimal_parse_of_item (G := G) (predata := data) str0 valid (take n str) it)
* (minimal_parse_of_production (G := G) str0 valid (drop n str) its) }%type)
-> ({ n : nat
& (In n split_list)
* (minimal_parse_of_item (G := G) str0 valid (take n str) it)
* (minimal_parse_of_production (G := G) str0 valid (drop n str) its) }%type).
Class boolean_parser_completeness_dataT' `{data : boolean_parser_dataT} :=
{ split_string_for_production_complete
: forall str0 valid str (pf : str ≤s str0) nt,
is_valid_nonterminal initial_nonterminals_data nt
-> ForallT
(Forall_tails
(fun prod
=> match prod return Type with
| nil => True
| it::its
=> @split_list_completeT data str0 valid it its str pf (split_string_for_production it its str)
end))
(Lookup G nt) }.
End general.
Module Export BooleanRecognizer.
Import Coq.Numbers.Natural.Peano.NPeano.
Import Coq.Arith.Compare_dec.
Import Coq.Arith.Wf_nat.
Section recursive_descent_parser.
Context {Char} {HSL : StringLike Char} {HSLP : StringLikeProperties Char} {G : grammar Char}.
Context {data : @boolean_parser_dataT Char _}.
Section bool.
Section parts.
Definition parse_item
(str_matches_nonterminal : String.string -> bool)
(str : String)
(it : item Char)
: bool.
Admitted.
Section production.
Context {str0}
(parse_nonterminal
: forall (str : String),
str ≤s str0
-> String.string
-> bool).
Fixpoint parse_production
(str : String)
(pf : str ≤s str0)
(prod : production Char)
: bool.
Proof.
refine
match prod with
| nil =>
Nat.eq_dec (length str) 0
| it::its
=> let parse_production' := fun str pf => parse_production str pf its in
fold_right
orb
false
(map (fun n =>
(parse_item
(parse_nonterminal (str := take n str) _)
(take n str)
it)
&& parse_production' (drop n str) _)%bool
(split_string_for_production it its str))
end;
revert pf; clear -HSLP; intros; admit.
Defined.
End production.
Section productions.
Context {str0}
(parse_nonterminal
: forall (str : String)
(pf : str ≤s str0),
String.string -> bool).
Definition parse_productions
(str : String)
(pf : str ≤s str0)
(prods : productions Char)
: bool.
exact (fold_right orb
false
(map (parse_production parse_nonterminal pf)
prods)).
Defined.
End productions.
Section nonterminals.
Section step.
Context {str0 valid}
(parse_nonterminal
: forall (p : String * nonterminals_listT),
prod_relation (ltof _ length) nonterminals_listT_R p (str0, valid)
-> forall str : String,
str ≤s fst p -> String.string -> bool).
Definition parse_nonterminal_step
(str : String)
(pf : str ≤s str0)
(nt : String.string)
: bool.
Proof.
refine
(if lt_dec (length str) (length str0)
then
parse_productions
(@parse_nonterminal
(str : String, initial_nonterminals_data)
(or_introl _))
(or_intror (reflexivity _))
(Lookup G nt)
else
if Sumbool.sumbool_of_bool (is_valid_nonterminal valid nt)
then
parse_productions
(@parse_nonterminal
(str0 : String, remove_nonterminal valid nt)
(or_intror (conj eq_refl (remove_nonterminal_dec _ nt _))))
(str := str)
_
(Lookup G nt)
else
false);
assumption.
Defined.
End step.
Section wf.
Definition parse_nonterminal_or_abort
: forall (p : String * nonterminals_listT)
(str : String),
str ≤s fst p
-> String.string
-> bool.
exact (Fix3
_ _ _
(well_founded_prod_relation
(well_founded_ltof _ length)
ntl_wf)
_
(fun sl => @parse_nonterminal_step (fst sl) (snd sl))).
Defined.
Definition parse_nonterminal
(str : String)
(nt : String.string)
: bool.
exact (@parse_nonterminal_or_abort
(str : String, initial_nonterminals_data) str
(or_intror (reflexivity _)) nt).
Defined.
End wf.
End nonterminals.
End parts.
End bool.
End recursive_descent_parser.
Section cfg.
Context {Char} {HSL : StringLike Char} {HSLP : @StringLikeProperties Char HSL} (G : grammar Char).
Section definitions.
Context (P : String -> String.string -> Type).
Definition Forall_parse_of_item'
(Forall_parse_of : forall {str pats} (p : parse_of G str pats), Type)
{str it} (p : parse_of_item G str it)
:= match p return Type with
| ParseTerminal ch pf => unit
| ParseNonTerminal nt p'
=> (P str nt * Forall_parse_of p')%type
end.
Fixpoint Forall_parse_of {str pats} (p : parse_of G str pats)
:= match p with
| ParseHead pat pats p'
=> Forall_parse_of_production p'
| ParseTail _ _ p'
=> Forall_parse_of p'
end
with Forall_parse_of_production {str pat} (p : parse_of_production G str pat)
:= match p return Type with
| ParseProductionNil pf => unit
| ParseProductionCons pat strs pats p' p''
=> (Forall_parse_of_item' (@Forall_parse_of) p' * Forall_parse_of_production p'')%type
end.
Definition Forall_parse_of_item {str it} (p : parse_of_item G str it)
:= @Forall_parse_of_item' (@Forall_parse_of) str it p.
End definitions.
End cfg.
Section recursive_descent_parser_list.
Context {Char} {HSL : StringLike Char} {HLSP : StringLikeProperties Char} {G : grammar Char}.
Definition rdp_list_nonterminals_listT : Type.
exact (list String.string).
Defined.
Definition rdp_list_is_valid_nonterminal : rdp_list_nonterminals_listT -> String.string -> bool.
admit.
Defined.
Definition rdp_list_remove_nonterminal : rdp_list_nonterminals_listT -> String.string -> rdp_list_nonterminals_listT.
admit.
Defined.
Definition rdp_list_nonterminals_listT_R : rdp_list_nonterminals_listT -> rdp_list_nonterminals_listT -> Prop.
exact (ltof _ (@List.length _)).
Defined.
Lemma rdp_list_remove_nonterminal_dec : forall ls prods,
@rdp_list_is_valid_nonterminal ls prods = true
-> @rdp_list_nonterminals_listT_R (@rdp_list_remove_nonterminal ls prods) ls.
admit.
Defined.
Lemma rdp_list_ntl_wf : well_founded rdp_list_nonterminals_listT_R.
Proof.
unfold rdp_list_nonterminals_listT_R.
intro.
apply well_founded_ltof.
Defined.
Global Instance rdp_list_predata : parser_computational_predataT
:= { nonterminals_listT := rdp_list_nonterminals_listT;
initial_nonterminals_data := Valid_nonterminals G;
is_valid_nonterminal := rdp_list_is_valid_nonterminal;
remove_nonterminal := rdp_list_remove_nonterminal;
nonterminals_listT_R := rdp_list_nonterminals_listT_R;
remove_nonterminal_dec := rdp_list_remove_nonterminal_dec;
ntl_wf := rdp_list_ntl_wf }.
End recursive_descent_parser_list.
Section sound.
Section general.
Context {Char} {HSL : StringLike Char} {HSLP : StringLikeProperties Char} (G : grammar Char).
Context {data : @boolean_parser_dataT Char _}
{cdata : @boolean_parser_completeness_dataT' Char _ G data}
{rdata : @parser_removal_dataT' predata}.
Section parts.
Section nonterminals.
Section wf.
Lemma parse_nonterminal_sound
(str : String) (nonterminal : String.string)
: parse_nonterminal (G := G) str nonterminal
= true
-> parse_of_item G str (NonTerminal nonterminal).
admit.
Defined.
End wf.
End nonterminals.
End parts.
End general.
End sound.
Import Coq.Strings.String.
Import ADTSynthesis.Parsers.ContextFreeGrammar.
Fixpoint list_to_productions {T} (default : T) (ls : list (string * T)) : string -> T
:= match ls with
| nil => fun _ => default
| (str, t)::ls' => fun s => if string_dec str s
then t
else list_to_productions default ls' s
end.
Fixpoint list_to_grammar {T} (default : productions T) (ls : list (string * productions T)) : grammar T
:= {| Start_symbol := hd ""%string (map (@fst _ _) ls);
Lookup := list_to_productions default ls;
Valid_nonterminals := map (@fst _ _) ls |}.
Section interface.
Context {Char} (G : grammar Char).
Definition production_is_reachable (p : production Char) : Prop.
admit.
Defined.
Definition split_list_is_complete `{HSL : StringLike Char} (str : String) (it : item Char) (its : production Char)
(splits : list nat)
: Prop.
exact (forall n,
n <= length str
-> parse_of_item G (take n str) it
-> parse_of_production G (drop n str) its
-> production_is_reachable (it::its)
-> List.In n splits).
Defined.
Record Splitter :=
{
string_type :> StringLike Char;
splits_for : String -> item Char -> production Char -> list nat;
string_type_properties :> StringLikeProperties Char;
splits_for_complete : forall str it its,
split_list_is_complete str it its (splits_for str it its)
}.
Global Existing Instance string_type_properties.
Record Parser (HSL : StringLike Char) :=
{
has_parse : @String Char HSL -> bool;
has_parse_sound : forall str,
has_parse str = true
-> parse_of_item G str (NonTerminal (Start_symbol G));
has_parse_complete : forall str (p : parse_of_item G str (NonTerminal (Start_symbol G))),
Forall_parse_of_item
(fun _ nt => List.In nt (Valid_nonterminals G))
p
-> has_parse str = true
}.
End interface.
Module Export ParserImplementation.
Section implementation.
Context {Char} {G : grammar Char}.
Context (splitter : Splitter G).
Local Instance parser_data : @boolean_parser_dataT Char _ :=
{ predata := rdp_list_predata (G := G);
split_string_for_production it its str
:= splits_for splitter str it its }.
Program Definition parser : Parser G splitter
:= {| has_parse str := parse_nonterminal (G := G) (data := parser_data) str (Start_symbol G);
has_parse_sound str Hparse := parse_nonterminal_sound G _ _ Hparse;
has_parse_complete str p Hp := _ |}.
Next Obligation.
admit.
Defined.
End implementation.
End ParserImplementation.
Section implementation.
Context {Char} {ls : list (String.string * productions Char)}.
Local Notation G := (list_to_grammar (nil::nil) ls) (only parsing).
Context (splitter : Splitter G).
Local Instance parser_data : @boolean_parser_dataT Char _ := parser_data splitter.
Goal forall str : @String Char splitter,
let G' :=
@BooleanRecognizer.parse_nonterminal Char splitter splitter G parser_data str G = true in
G'.
intros str G'.
Timeout 1 assert (pf' : G' -> Prop) by abstract admit.
|