aboutsummaryrefslogtreecommitdiffhomepage
path: root/test-suite/bugs/closed/3427.v
blob: 9a57ca77035f69ff9bb8701a8fee9cafc0d6b654 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
Require Import TestSuite.admit.
(* -*- mode: coq; coq-prog-args: ("-indices-matter") -*- *)
(* File reduced by coq-bug-finder from original input, then from 0 lines to 7171 lines, then from 7184 lines to 558 lines, then from 556 lines to 209 lines *)
Generalizable All Variables.
Set Universe Polymorphism.
Notation Type0 := Set.
Notation idmap := (fun x => x).
Definition compose {A B C : Type} (g : B -> C) (f : A -> B) := fun x => g (f x).
Notation "g 'o' f" := (compose g f) (at level 40, left associativity) : function_scope.
Open Scope function_scope.
Inductive paths {A : Type} (a : A) : A -> Type := idpath : paths a a where "x = y" := (@paths _ x y) : type_scope.
Arguments idpath {A a} , [A] a.
Delimit Scope path_scope with path.
Local Open Scope path_scope.
Definition concat {A : Type} {x y z : A} (p : x = y) (q : y = z) : x = z := match p, q with idpath, idpath => idpath end.
Definition inverse {A : Type} {x y : A} (p : x = y) : y = x := match p with idpath => idpath end.
Notation "1" := idpath : path_scope.
Notation "p @ q" := (concat p q) (at level 20) : path_scope.
Notation "p ^" := (inverse p) (at level 3) : path_scope.
Definition transport {A : Type} (P : A -> Type) {x y : A} (p : x = y) (u : P x) : P y := match p with idpath => u end.
Notation "p # x" := (transport _ p x) (right associativity, at level 65, only parsing) : path_scope.
Definition ap {A B:Type} (f:A -> B) {x y:A} (p:x = y) : f x = f y := match p with idpath => idpath end.
Definition pointwise_paths {A} {P:A->Type} (f g:forall x:A, P x) := forall x:A, f x = g x.
Notation "f == g" := (pointwise_paths f g) (at level 70, no associativity) : type_scope.
Definition apD10 {A} {B:A->Type} {f g : forall x, B x} (h:f=g) : forall x, f x = g x := fun x => match h with idpath => idpath end.
Definition Sect {A B : Type} (s : A -> B) (r : B -> A) := forall x : A, r (s x) = x.
Class IsEquiv {A B : Type} (f : A -> B) := BuildIsEquiv {
                                               equiv_inv : B -> A ;
                                               eisretr : Sect equiv_inv f;
                                               eissect : Sect f equiv_inv;
                                               eisadj : forall x : A, eisretr (f x) = ap f (eissect x)
                                             }.
Record Equiv A B := BuildEquiv {
                        equiv_fun :> A -> B ;
                        equiv_isequiv :> IsEquiv equiv_fun
                      }.

Delimit Scope equiv_scope with equiv.

Notation "A <~> B" := (Equiv A B) (at level 85) : equiv_scope.

Notation "f ^-1" := (@equiv_inv _ _ f _) (at level 3) : equiv_scope.

Class Contr_internal (A : Type) := BuildContr {
                                       center : A ;
                                       contr : (forall y : A, center = y)
                                     }.

Inductive trunc_index : Type :=
| minus_two : trunc_index
| trunc_S : trunc_index -> trunc_index.

Fixpoint nat_to_trunc_index (n : nat) : trunc_index
  := match n with
       | 0 => trunc_S (trunc_S minus_two)
       | S n' => trunc_S (nat_to_trunc_index n')
     end.

Coercion nat_to_trunc_index : nat >-> trunc_index.

Fixpoint IsTrunc_internal (n : trunc_index) (A : Type) : Type :=
  match n with
    | minus_two => Contr_internal A
    | trunc_S n' => forall (x y : A), IsTrunc_internal n' (x = y)
  end.

Notation minus_one:=(trunc_S minus_two).

Class IsTrunc (n : trunc_index) (A : Type) : Type :=
  Trunc_is_trunc : IsTrunc_internal n A.

Notation Contr := (IsTrunc minus_two).
Notation IsHProp := (IsTrunc minus_one).
Notation IsHSet := (IsTrunc 0).

Class Funext :=
  { isequiv_apD10 :> forall (A : Type) (P : A -> Type) f g, IsEquiv (@apD10 A P f g) }.

Definition concat_pV {A : Type} {x y : A} (p : x = y) :
  p @ p^ = 1
  :=
    match p with idpath => 1 end.

Definition concat_Vp {A : Type} {x y : A} (p : x = y) :
  p^ @ p = 1
  :=
    match p with idpath => 1 end.

Definition transport_pp {A : Type} (P : A -> Type) {x y z : A} (p : x = y) (q : y = z) (u : P x) :
  p @ q # u = q # p # u :=
  match q with idpath =>
               match p with idpath => 1 end
  end.

Definition transport2 {A : Type} (P : A -> Type) {x y : A} {p q : x = y}
           (r : p = q) (z : P x)
: p # z = q # z
  := ap (fun p' => p' # z) r.

Inductive Unit : Type0 :=
  tt : Unit.

Instance contr_unit : Contr Unit | 0 := let x := {|
                                              center := tt;
                                              contr := fun t : Unit => match t with tt => 1 end
                                            |} in x.

Instance trunc_succ `{IsTrunc n A} : IsTrunc (trunc_S n) A | 1000.
admit.
Defined.

Record hProp := hp { hproptype :> Type ; isp : IsHProp hproptype}.
Definition Unit_hp:hProp:=(hp Unit _).

Global Instance isequiv_ap_hproptype `{Funext} X Y : IsEquiv (@ap _ _ hproptype X Y).
admit.
Defined.

Definition path_hprop `{Funext} X Y := (@ap _ _ hproptype X Y)^-1%equiv.

Record hSet := BuildhSet {setT:> Type; iss :> IsHSet setT}.
Local Open Scope equiv_scope.

Instance isequiv_path {A B : Type} (p : A = B)
: IsEquiv (transport (fun X:Type => X) p) | 0
  := BuildIsEquiv _ _ _ (transport (fun X:Type => X) p^)
                  (fun b => ((transport_pp idmap p^ p b)^ @ transport2 idmap (concat_Vp p) b))
                  (fun a => ((transport_pp idmap p p^ a)^ @ transport2 idmap (concat_pV p) a))
                  (fun a => match p in _ = C return
                                  (transport_pp idmap p^ p (transport idmap p a))^ @
                                                                                     transport2 idmap (concat_Vp p) (transport idmap p a) =
                                  ap (transport idmap p) ((transport_pp idmap p p^ a) ^ @
                                                                                          transport2 idmap (concat_pV p) a) with idpath => 1 end).

Definition equiv_path (A B : Type) (p : A = B) : A <~> B
  := BuildEquiv _ _ (transport (fun X:Type => X) p) _.

Class Univalence := {
                     isequiv_equiv_path :> forall (A B : Type), IsEquiv (equiv_path A B)
                   }.

Section Univalence.
  Context `{Univalence}.

  Definition path_universe_uncurried {A B : Type} (f : A <~> B) : A = B
    := (equiv_path A B)^-1 f.
End Univalence.

Local Inductive minus1Trunc (A :Type) : Type :=
  min1 : A -> minus1Trunc A.

Instance minus1Trunc_is_prop {A : Type} : IsHProp (minus1Trunc A) | 0.
admit.
Defined.

Definition hexists {X} (P:X->Type):Type:= minus1Trunc (sigT  P).

Section AssumingUA.

  Definition isepi {X Y} `(f:X->Y) := forall Z: hSet,
                                      forall g h: Y -> Z, g o f = h o f -> g = h.
  Context {X Y : hSet} (f : X -> Y) (Hisepi : isepi f).

  Goal forall (X Y : hSet) (f : forall _ : setT X, setT Y),
         let fib :=
             fun y : setT Y =>
               hp (@hexists (setT X) (fun x : setT X => @paths (setT Y) (f x) y))
                  (@minus1Trunc_is_prop
                     (@sigT (setT X) (fun x : setT X => @paths (setT Y) (f x) y))) in
         forall (x : setT X) (_ : Univalence) (_ : Funext),
           @paths hProp (fib (f x)) Unit_hp.
  intros.

  apply path_hprop.
  simpl.
  Set Printing Universes.
  Set Printing All.
  refine (path_universe_uncurried _).
  Undo.
  apply path_universe_uncurried. (* Toplevel input, characters 21-44:
Error: Refiner was given an argument
 "@path_universe_uncurried (* Top.425 Top.426 Top.427 Top.428 Top.429 *) X1
    (@hexists (* Top.405 Top.404 Set Set *) (setT (* Top.405 *) X0)
       (fun x0 : setT (* Top.405 *) X0 =>
        @paths (* Top.404 *) (setT (* Top.404 *) Y0) (f0 x0) (f0 x))) Unit
    ?63" of type
 "@paths (* Top.428 *) Type (* Top.425 *)
    (@hexists (* Top.405 Top.404 Set Set *) (setT (* Top.405 *) X0)
       (fun x0 : setT (* Top.405 *) X0 =>
        @paths (* Top.404 *) (setT (* Top.404 *) Y0) (f0 x0) (f0 x))) Unit"
instead of
 "@paths (* Top.413 *) Type (* Set *)
    (@hexists (* Top.405 Top.404 Set Set *) (setT (* Top.405 *) X0)
       (fun x0 : setT (* Top.405 *) X0 =>
        @paths (* Top.404 *) (setT (* Top.404 *) Y0) (f0 x0) (f0 x))) Unit".
 *)