blob: 759cd3dd286d0e970b3582f4d31d47d851c23896 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
|
Class Join (t: Type) : Type := mkJoin {join: t -> t -> t -> Prop}.
Class sepalg (t: Type) {JOIN: Join t} : Type :=
SepAlg {
join_eq: forall {x y z z'}, join x y z -> join x y z' -> z = z';
join_assoc: forall {a b c d e}, join a b d -> join d c e ->
{f : t & join b c f /\ join a f e};
join_com: forall {a b c}, join a b c -> join b a c;
join_canc: forall {a1 a2 b c}, join a1 b c -> join a2 b c -> a1=a2;
unit_for : t -> t -> Prop := fun e a => join e a a;
join_ex_units: forall a, {e : t & unit_for e a}
}.
Definition joins {A} `{Join A} (a b : A) : Prop :=
exists c, join a b c.
Lemma join_joins {A} `{sepalg A}: forall {a b c},
join a b c -> joins a b.
Proof.
firstorder.
Qed.
|