blob: 0826428a3448febc8b9728f49ed606594916de4c (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
Require Import Setoid.
Inductive mynat := z : mynat | s : mynat -> mynat.
Parameter E : mynat -> mynat -> Prop.
Axiom E_equiv : equiv mynat E.
Add Relation mynat E
reflexivity proved by (proj1 E_equiv)
symmetry proved by (proj2 (proj2 E_equiv))
transitivity proved by (proj1 (proj2 E_equiv))
as E_rel.
Notation "x == y" := (E x y) (at level 70).
Goal z == s z -> s z == z. intros H. setoid_rewrite H at 2. reflexivity. Qed.
|