blob: 3e99694b3cc939d391114c63e8a20f6b5d6a42b1 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
|
Require Import Setoid.
Section SetoidBug.
Variable ms : Type.
Variable ms_type : ms -> Type.
Variable ms_eq : forall (A:ms), relation (ms_type A).
Variable CR : ms.
Record Ring : Type :=
{Ring_type : Type}.
Variable foo : forall (A:Ring), nat -> Ring_type A.
Variable IR : Ring.
Variable IRasCR : Ring_type IR -> ms_type CR.
Definition CRasCRing : Ring := Build_Ring (ms_type CR).
Hypothesis ms_refl : forall A x, ms_eq A x x.
Hypothesis ms_sym : forall A x y, ms_eq A x y -> ms_eq A y x.
Hypothesis ms_trans : forall A x y z, ms_eq A x y -> ms_eq A y z -> ms_eq A x z.
Add Parametric Relation A : (ms_type A) (ms_eq A)
reflexivity proved by (ms_refl A)
symmetry proved by (ms_sym A)
transitivity proved by (ms_trans A)
as ms_Setoid.
Hypothesis foobar : forall n, ms_eq CR (IRasCR (foo IR n)) (foo CRasCRing n).
Goal forall (b:ms_type CR),
ms_eq CR (IRasCR (foo IR O)) b ->
ms_eq CR (IRasCR (foo IR O)) b.
intros b H.
rewrite foobar.
rewrite foobar in H.
assumption.
Qed.
|