1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2017 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i*)
open Util
open Constr
open Names
open Globnames
open Mod_subst
open Pp (* debug *)
(*i*)
(* Representation/approximation of terms to use in the dnet:
*
* - no meta or evar (use ['a pattern] for that)
*
* - [Rel]s and [Sort]s are not taken into account (that's why we need
* a second pass of linear filterin on the results - it's not a perfect
* term indexing structure)
* - Foralls and LetIns are represented by a context DCtx (a list of
* generalization, similar to rel_context, and coded with DCons and
* DNil). This allows for matching under an unfinished context
*)
module DTerm =
struct
type 't t =
| DRel
| DSort
| DRef of global_reference
| DCtx of 't * 't (* (binding list, subterm) = Prods and LetIns *)
| DLambda of 't * 't
| DApp of 't * 't (* binary app *)
| DCase of case_info * 't * 't * 't array
| DFix of int array * int * 't array * 't array
| DCoFix of int * 't array * 't array
(* special constructors only inside the left-hand side of DCtx or
DApp. Used to encode lists of foralls/letins/apps as contexts *)
| DCons of ('t * 't option) * 't
| DNil
(* debug *)
let _pr_dconstr f : 'a t -> Pp.t = function
| DRel -> str "*"
| DSort -> str "Sort"
| DRef _ -> str "Ref"
| DCtx (ctx,t) -> f ctx ++ spc() ++ str "|-" ++ spc () ++ f t
| DLambda (t1,t2) -> str "fun"++ spc() ++ f t1 ++ spc() ++ str"->" ++ spc() ++ f t2
| DApp (t1,t2) -> f t1 ++ spc() ++ f t2
| DCase (_,t1,t2,ta) -> str "case"
| DFix _ -> str "fix"
| DCoFix _ -> str "cofix"
| DCons ((t,dopt),tl) -> f t ++ (match dopt with
Some t' -> str ":=" ++ f t'
| None -> str "") ++ spc() ++ str "::" ++ spc() ++ f tl
| DNil -> str "[]"
(*
* Functional iterators for the t datatype
* a.k.a boring and error-prone boilerplate code
*)
let map f = function
| (DRel | DSort | DNil | DRef _) as c -> c
| DCtx (ctx,c) -> DCtx (f ctx, f c)
| DLambda (t,c) -> DLambda (f t, f c)
| DApp (t,u) -> DApp (f t,f u)
| DCase (ci,p,c,bl) -> DCase (ci, f p, f c, Array.map f bl)
| DFix (ia,i,ta,ca) ->
DFix (ia,i,Array.map f ta,Array.map f ca)
| DCoFix(i,ta,ca) ->
DCoFix (i,Array.map f ta,Array.map f ca)
| DCons ((t,topt),u) -> DCons ((f t,Option.map f topt), f u)
let compare_ci ci1 ci2 =
let c = ind_ord ci1.ci_ind ci2.ci_ind in
if c = 0 then
let c = Int.compare ci1.ci_npar ci2.ci_npar in
if c = 0 then
let c = Array.compare Int.compare ci1.ci_cstr_ndecls ci2.ci_cstr_ndecls in
if c = 0 then
Array.compare Int.compare ci1.ci_cstr_nargs ci2.ci_cstr_nargs
else c
else c
else c
let compare cmp t1 t2 = match t1, t2 with
| DRel, DRel -> 0
| DRel, _ -> -1 | _, DRel -> 1
| DSort, DSort -> 0
| DSort, _ -> -1 | _, DSort -> 1
| DRef gr1, DRef gr2 -> RefOrdered.compare gr1 gr2
| DRef _, _ -> -1 | _, DRef _ -> 1
| DCtx (tl1, tr1), DCtx (tl2, tr2)
| DLambda (tl1, tr1), DLambda (tl2, tr2)
| DApp (tl1, tr1), DApp (tl2, tr2) ->
let c = cmp tl1 tl2 in
if c = 0 then cmp tr1 tr2 else c
| DCtx _, _ -> -1 | _, DCtx _ -> 1
| DLambda _, _ -> -1 | _, DLambda _ -> 1
| DApp _, _ -> -1 | _, DApp _ -> 1
| DCase (ci1, c1, t1, p1), DCase (ci2, c2, t2, p2) ->
let c = cmp c1 c2 in
if c = 0 then
let c = cmp t1 t2 in
if c = 0 then
let c = Array.compare cmp p1 p2 in
if c = 0 then compare_ci ci1 ci2
else c
else c
else c
| DCase _, _ -> -1 | _, DCase _ -> 1
| DFix (i1, j1, tl1, pl1), DFix (i2, j2, tl2, pl2) ->
let c = Int.compare j1 j2 in
if c = 0 then
let c = Array.compare Int.compare i1 i2 in
if c = 0 then
let c = Array.compare cmp tl1 tl2 in
if c = 0 then Array.compare cmp pl1 pl2
else c
else c
else c
| DFix _, _ -> -1 | _, DFix _ -> 1
| DCoFix (i1, tl1, pl1), DCoFix (i2, tl2, pl2) ->
let c = Int.compare i1 i2 in
if c = 0 then
let c = Array.compare cmp tl1 tl2 in
if c = 0 then Array.compare cmp pl1 pl2
else c
else c
| DCoFix _, _ -> -1 | _, DCoFix _ -> 1
| DCons ((t1, ot1), u1), DCons ((t2, ot2), u2) ->
let c = cmp t1 t2 in
if Int.equal c 0 then
let c = Option.compare cmp ot1 ot2 in
if Int.equal c 0 then cmp u1 u2
else c
else c
| DCons _, _ -> -1 | _, DCons _ -> 1
| DNil, DNil -> 0
let fold f acc = function
| (DRel | DNil | DSort | DRef _) -> acc
| DCtx (ctx,c) -> f (f acc ctx) c
| DLambda (t,c) -> f (f acc t) c
| DApp (t,u) -> f (f acc t) u
| DCase (ci,p,c,bl) -> Array.fold_left f (f (f acc p) c) bl
| DFix (ia,i,ta,ca) ->
Array.fold_left f (Array.fold_left f acc ta) ca
| DCoFix(i,ta,ca) ->
Array.fold_left f (Array.fold_left f acc ta) ca
| DCons ((t,topt),u) -> f (Option.fold_left f (f acc t) topt) u
let choose f = function
| (DRel | DSort | DNil | DRef _) -> invalid_arg "choose"
| DCtx (ctx,c) -> f ctx
| DLambda (t,c) -> f t
| DApp (t,u) -> f u
| DCase (ci,p,c,bl) -> f c
| DFix (ia,i,ta,ca) -> f ta.(0)
| DCoFix (i,ta,ca) -> f ta.(0)
| DCons ((t,topt),u) -> f u
let dummy_cmp () () = 0
let fold2 (f:'a -> 'b -> 'c -> 'a) (acc:'a) (c1:'b t) (c2:'c t) : 'a =
let head w = map (fun _ -> ()) w in
if not (Int.equal (compare dummy_cmp (head c1) (head c2)) 0)
then invalid_arg "fold2:compare" else
match c1,c2 with
| (DRel, DRel | DNil, DNil | DSort, DSort | DRef _, DRef _) -> acc
| (DCtx (c1,t1), DCtx (c2,t2)
| DApp (c1,t1), DApp (c2,t2)
| DLambda (c1,t1), DLambda (c2,t2)) -> f (f acc c1 c2) t1 t2
| DCase (ci,p1,c1,bl1),DCase (_,p2,c2,bl2) ->
Array.fold_left2 f (f (f acc p1 p2) c1 c2) bl1 bl2
| DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) ->
Array.fold_left2 f (Array.fold_left2 f acc ta1 ta2) ca1 ca2
| DCoFix(i,ta1,ca1), DCoFix(_,ta2,ca2) ->
Array.fold_left2 f (Array.fold_left2 f acc ta1 ta2) ca1 ca2
| DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) ->
f (Option.fold_left2 f (f acc t1 t2) topt1 topt2) u1 u2
| (DRel | DNil | DSort | DRef _ | DCtx _ | DApp _ | DLambda _ | DCase _
| DFix _ | DCoFix _ | DCons _), _ -> assert false
let map2 (f:'a -> 'b -> 'c) (c1:'a t) (c2:'b t) : 'c t =
let head w = map (fun _ -> ()) w in
if not (Int.equal (compare dummy_cmp (head c1) (head c2)) 0)
then invalid_arg "map2_t:compare" else
match c1,c2 with
| (DRel, DRel | DSort, DSort | DNil, DNil | DRef _, DRef _) as cc ->
let (c,_) = cc in c
| DCtx (c1,t1), DCtx (c2,t2) -> DCtx (f c1 c2, f t1 t2)
| DLambda (t1,c1), DLambda (t2,c2) -> DLambda (f t1 t2, f c1 c2)
| DApp (t1,u1), DApp (t2,u2) -> DApp (f t1 t2,f u1 u2)
| DCase (ci,p1,c1,bl1), DCase (_,p2,c2,bl2) ->
DCase (ci, f p1 p2, f c1 c2, Array.map2 f bl1 bl2)
| DFix (ia,i,ta1,ca1), DFix (_,_,ta2,ca2) ->
DFix (ia,i,Array.map2 f ta1 ta2,Array.map2 f ca1 ca2)
| DCoFix (i,ta1,ca1), DCoFix (_,ta2,ca2) ->
DCoFix (i,Array.map2 f ta1 ta2,Array.map2 f ca1 ca2)
| DCons ((t1,topt1),u1), DCons ((t2,topt2),u2) ->
DCons ((f t1 t2,Option.lift2 f topt1 topt2), f u1 u2)
| (DRel | DNil | DSort | DRef _ | DCtx _ | DApp _ | DLambda _ | DCase _
| DFix _ | DCoFix _ | DCons _), _ -> assert false
let terminal = function
| (DRel | DSort | DNil | DRef _) -> true
| DLambda _ | DApp _ | DCase _ | DFix _ | DCoFix _ | DCtx _ | DCons _ ->
false
let compare t1 t2 = compare dummy_cmp t1 t2
end
(*
* Terms discrimination nets
* Uses the general dnet datatype on DTerm.t
* (here you can restart reading)
*)
(*
* Construction of the module
*)
module type IDENT =
sig
type t
val compare : t -> t -> int
val subst : substitution -> t -> t
val constr_of : t -> constr
end
module type OPT =
sig
val reduce : constr -> constr
val direction : bool
end
module Make =
functor (Ident : IDENT) ->
functor (Opt : OPT) ->
struct
module TDnet : Dnet.S with type ident=Ident.t
and type 'a structure = 'a DTerm.t
and type meta = int
= Dnet.Make(DTerm)(Ident)(Int)
type t = TDnet.t
type ident = TDnet.ident
(** We will freshen metas on the fly, to cope with the implementation defect
of Term_dnet which requires metas to be all distinct. *)
let fresh_meta =
let index = ref 0 in
fun () ->
let ans = !index in
let () = index := succ ans in
ans
open DTerm
open TDnet
let pat_of_constr c : term_pattern =
(** To each evar we associate a unique identifier. *)
let metas = ref Evar.Map.empty in
let rec pat_of_constr c = match Constr.kind c with
| Rel _ -> Term DRel
| Sort _ -> Term DSort
| Var i -> Term (DRef (VarRef i))
| Const (c,u) -> Term (DRef (ConstRef c))
| Ind (i,u) -> Term (DRef (IndRef i))
| Construct (c,u)-> Term (DRef (ConstructRef c))
| Term.Meta _ -> assert false
| Evar (i,_) ->
let meta =
try Evar.Map.find i !metas
with Not_found ->
let meta = fresh_meta () in
let () = metas := Evar.Map.add i meta !metas in
meta
in
Meta meta
| Case (ci,c1,c2,ca) ->
Term(DCase(ci,pat_of_constr c1,pat_of_constr c2,Array.map pat_of_constr ca))
| Fix ((ia,i),(_,ta,ca)) ->
Term(DFix(ia,i,Array.map pat_of_constr ta, Array.map pat_of_constr ca))
| CoFix (i,(_,ta,ca)) ->
Term(DCoFix(i,Array.map pat_of_constr ta,Array.map pat_of_constr ca))
| Cast (c,_,_) -> pat_of_constr c
| Lambda (_,t,c) -> Term(DLambda (pat_of_constr t, pat_of_constr c))
| (Prod (_,_,_) | LetIn(_,_,_,_)) ->
let (ctx,c) = ctx_of_constr (Term DNil) c in Term (DCtx (ctx,c))
| App (f,ca) ->
Array.fold_left (fun c a -> Term (DApp (c,a)))
(pat_of_constr f) (Array.map pat_of_constr ca)
| Proj (p,c) ->
Term (DApp (Term (DRef (ConstRef (Projection.constant p))), pat_of_constr c))
and ctx_of_constr ctx c = match Constr.kind c with
| Prod (_,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t,None),ctx))) c
| LetIn(_,d,t,c) -> ctx_of_constr (Term(DCons((pat_of_constr t, Some (pat_of_constr d)),ctx))) c
| _ -> ctx,pat_of_constr c
in
pat_of_constr c
let empty_ctx : term_pattern -> term_pattern = function
| Meta _ as c -> c
| Term (DCtx(_,_)) as c -> c
| c -> Term (DCtx (Term DNil, c))
(*
* Basic primitives
*)
let empty = TDnet.empty
let subst s t =
let sleaf id = Ident.subst s id in
let snode = function
| DTerm.DRef gr -> DTerm.DRef (fst (subst_global s gr))
| n -> n in
TDnet.map sleaf snode t
let union = TDnet.union
let add (c:constr) (id:Ident.t) (dn:t) =
let c = Opt.reduce c in
let c = empty_ctx (pat_of_constr c) in
TDnet.add dn c id
let new_meta () = Meta (fresh_meta ())
let rec remove_cap : term_pattern -> term_pattern = function
| Term (DCons (t,u)) -> Term (DCons (t,remove_cap u))
| Term DNil -> new_meta()
| Meta _ as m -> m
| _ -> assert false
let under_prod : term_pattern -> term_pattern = function
| Term (DCtx (t,u)) -> Term (DCtx (remove_cap t,u))
| Meta m -> Term (DCtx(new_meta(), Meta m))
| _ -> assert false
(* debug *)
(* let rec pr_term_pattern p =
(fun pr_t -> function
| Term t -> pr_t t
| Meta m -> str"["++Pp.int (Obj.magic m)++str"]"
) (pr_dconstr pr_term_pattern) p*)
let search_pat cpat dpat dn =
let whole_c = EConstr.of_constr cpat in
(* if we are at the root, add an empty context *)
let dpat = under_prod (empty_ctx dpat) in
TDnet.Idset.fold
(fun id acc ->
let c_id = Opt.reduce (Ident.constr_of id) in
let c_id = EConstr.of_constr c_id in
let (ctx,wc) =
try Termops.align_prod_letin Evd.empty whole_c c_id (** FIXME *)
with Invalid_argument _ -> [],c_id in
let wc,whole_c = if Opt.direction then whole_c,wc else wc,whole_c in
try
let _ = Termops.filtering Evd.empty ctx Reduction.CUMUL wc whole_c in
id :: acc
with Termops.CannotFilter -> (* msgnl(str"recon "++Termops.print_constr_env (Global.env()) wc); *) acc
) (TDnet.find_match dpat dn) []
(*
* High-level primitives describing specific search problems
*)
let search_pattern dn pat =
let pat = Opt.reduce pat in
search_pat pat (empty_ctx (pat_of_constr pat)) dn
let find_all dn = Idset.elements (TDnet.find_all dn)
let map f dn = TDnet.map f (fun x -> x) dn
let refresh_metas dn =
let new_metas = ref Int.Map.empty in
let refresh_one_meta i =
try Int.Map.find i !new_metas
with Not_found ->
let new_meta = fresh_meta () in
let () = new_metas := Int.Map.add i new_meta !new_metas in
new_meta
in
TDnet.map_metas refresh_one_meta dn
end
module type S =
sig
type t
type ident
val empty : t
val add : constr -> ident -> t -> t
val union : t -> t -> t
val subst : substitution -> t -> t
val search_pattern : t -> constr -> ident list
val find_all : t -> ident list
val map : (ident -> ident) -> t -> t
val refresh_metas : t -> t
end
|