1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "grammar/grammar.cma" i*)
open Term
open Hipattern
open Names
open Pp
open Genarg
open Stdarg
open Tacinterp
open Tactics
open Errors
open Util
DECLARE PLUGIN "tauto"
let assoc_var s ist =
let v = Id.Map.find (Names.Id.of_string s) ist.lfun in
match Value.to_constr v with
| Some c -> c
| None -> failwith "tauto: anomaly"
(** Parametrization of tauto *)
type tauto_flags = {
(* Whether conjunction and disjunction are restricted to binary connectives *)
binary_mode : bool;
(* Whether compatibility for buggy detection of binary connective is on *)
binary_mode_bugged_detection : bool;
(* Whether conjunction and disjunction are restricted to the connectives *)
(* having the structure of "and" and "or" (up to the choice of sorts) in *)
(* contravariant position in an hypothesis *)
strict_in_contravariant_hyp : bool;
(* Whether conjunction and disjunction are restricted to the connectives *)
(* having the structure of "and" and "or" (up to the choice of sorts) in *)
(* an hypothesis and in the conclusion *)
strict_in_hyp_and_ccl : bool;
(* Whether unit type includes equality types *)
strict_unit : bool;
}
(* Whether inner not are unfolded *)
let negation_unfolding = ref true
(* Whether inner iff are unfolded *)
let iff_unfolding = ref false
let unfold_iff () = !iff_unfolding || Flags.version_less_or_equal Flags.V8_2
open Goptions
let _ =
declare_bool_option
{ optsync = true;
optdepr = false;
optname = "unfolding of not in intuition";
optkey = ["Intuition";"Negation";"Unfolding"];
optread = (fun () -> !negation_unfolding);
optwrite = (:=) negation_unfolding }
let _ =
declare_bool_option
{ optsync = true;
optdepr = false;
optname = "unfolding of iff in intuition";
optkey = ["Intuition";"Iff";"Unfolding"];
optread = (fun () -> !iff_unfolding);
optwrite = (:=) iff_unfolding }
(** Test *)
let make_lfun l =
let fold accu (id, v) = Id.Map.add (Id.of_string id) v accu in
List.fold_left fold Id.Map.empty l
let is_empty ist =
if is_empty_type (assoc_var "X1" ist) then
<:tactic<idtac>>
else
<:tactic<fail>>
(* Strictly speaking, this exceeds the propositional fragment as it
matches also equality types (and solves them if a reflexivity) *)
let is_unit_or_eq flags ist =
let test = if flags.strict_unit then is_unit_type else is_unit_or_eq_type in
if test (assoc_var "X1" ist) then
<:tactic<idtac>>
else
<:tactic<fail>>
let is_record t =
let (hdapp,args) = decompose_app t in
match (kind_of_term hdapp) with
| Ind (ind,u) ->
let (mib,mip) = Global.lookup_inductive ind in
mib.Declarations.mind_record <> None
| _ -> false
let bugged_is_binary t =
isApp t &&
let (hdapp,args) = decompose_app t in
match (kind_of_term hdapp) with
| Ind (ind,u) ->
let (mib,mip) = Global.lookup_inductive ind in
Int.equal mib.Declarations.mind_nparams 2
| _ -> false
let iter_tac tacl =
List.fold_right (fun tac tacs -> <:tactic< $tac; $tacs >>) tacl
(** Dealing with conjunction *)
let is_conj flags ist =
let ind = assoc_var "X1" ist in
if (not flags.binary_mode_bugged_detection || bugged_is_binary ind) &&
is_conjunction
~strict:flags.strict_in_hyp_and_ccl
~onlybinary:flags.binary_mode ind
then
<:tactic<idtac>>
else
<:tactic<fail>>
let flatten_contravariant_conj flags ist =
let typ = assoc_var "X1" ist in
let c = assoc_var "X2" ist in
let hyp = assoc_var "id" ist in
match match_with_conjunction
~strict:flags.strict_in_contravariant_hyp
~onlybinary:flags.binary_mode typ
with
| Some (_,args) ->
let newtyp = valueIn (Value.of_constr (List.fold_right mkArrow args c)) in
let hyp = valueIn (Value.of_constr hyp) in
let intros =
iter_tac (List.map (fun _ -> <:tactic< intro >>) args)
<:tactic< idtac >> in
<:tactic<
let newtyp := $newtyp in
let hyp := $hyp in
assert newtyp by ($intros; apply hyp; split; assumption);
clear hyp
>>
| _ ->
<:tactic<fail>>
(** Dealing with disjunction *)
let constructor i =
let name = { Tacexpr.mltac_plugin = "coretactics"; mltac_tactic = "constructor" } in
let i = in_gen (rawwit Constrarg.wit_int_or_var) (Misctypes.ArgArg i) in
Tacexpr.TacML (Loc.ghost, name, [i])
let is_disj flags ist =
let t = assoc_var "X1" ist in
if (not flags.binary_mode_bugged_detection || bugged_is_binary t) &&
is_disjunction
~strict:flags.strict_in_hyp_and_ccl
~onlybinary:flags.binary_mode t
then
<:tactic<idtac>>
else
<:tactic<fail>>
let flatten_contravariant_disj flags ist =
let typ = assoc_var "X1" ist in
let c = assoc_var "X2" ist in
let hyp = assoc_var "id" ist in
match match_with_disjunction
~strict:flags.strict_in_contravariant_hyp
~onlybinary:flags.binary_mode
typ with
| Some (_,args) ->
let hyp = valueIn (Value.of_constr hyp) in
iter_tac (List.map_i (fun i arg ->
let typ = valueIn (Value.of_constr (mkArrow arg c)) in
let ci = constructor i in
<:tactic<
let typ := $typ in
let hyp := $hyp in
assert typ by (intro; apply hyp; $ci; assumption)
>>) 1 args) <:tactic< let hyp := $hyp in clear hyp >>
| _ ->
<:tactic<fail>>
(** Main tactic *)
let not_dep_intros ist =
<:tactic<
repeat match goal with
| |- (forall (_: ?X1), ?X2) => intro
| |- (Coq.Init.Logic.not _) => unfold Coq.Init.Logic.not at 1; intro
end >>
let axioms flags ist =
let t_is_unit_or_eq = tacticIn (is_unit_or_eq flags)
and t_is_empty = tacticIn is_empty in
let c1 = constructor 1 in
<:tactic<
match reverse goal with
| |- ?X1 => $t_is_unit_or_eq; $c1
| _:?X1 |- _ => $t_is_empty; elimtype X1; assumption
| _:?X1 |- ?X1 => assumption
end >>
let simplif flags ist =
let t_is_unit_or_eq = tacticIn (is_unit_or_eq flags)
and t_is_conj = tacticIn (is_conj flags)
and t_flatten_contravariant_conj = tacticIn (flatten_contravariant_conj flags)
and t_flatten_contravariant_disj = tacticIn (flatten_contravariant_disj flags)
and t_is_disj = tacticIn (is_disj flags)
and t_not_dep_intros = tacticIn not_dep_intros in
let c1 = constructor 1 in
<:tactic<
$t_not_dep_intros;
repeat
(match reverse goal with
| id: ?X1 |- _ => $t_is_conj; elim id; do 2 intro; clear id
| id: (Coq.Init.Logic.iff _ _) |- _ => elim id; do 2 intro; clear id
| id: (Coq.Init.Logic.not _) |- _ => red in id
| id: ?X1 |- _ => $t_is_disj; elim id; intro; clear id
| id0: (forall (_: ?X1), ?X2), id1: ?X1|- _ =>
(* generalize (id0 id1); intro; clear id0 does not work
(see Marco Maggiesi's bug PR#301)
so we instead use Assert and exact. *)
assert X2; [exact (id0 id1) | clear id0]
| id: forall (_ : ?X1), ?X2|- _ =>
$t_is_unit_or_eq; cut X2;
[ intro; clear id
| (* id : forall (_: ?X1), ?X2 |- ?X2 *)
cut X1; [exact id| $c1; fail]
]
| id: forall (_ : ?X1), ?X2|- _ =>
$t_flatten_contravariant_conj
(* moved from "id:(?A/\?B)->?X2|-" to "?A->?B->?X2|-" *)
| id: forall (_: Coq.Init.Logic.iff ?X1 ?X2), ?X3|- _ =>
assert (forall (_: forall _:X1, X2), forall (_: forall _: X2, X1), X3)
by (do 2 intro; apply id; split; assumption);
clear id
| id: forall (_:?X1), ?X2|- _ =>
$t_flatten_contravariant_disj
(* moved from "id:(?A\/?B)->?X2|-" to "?A->?X2,?B->?X2|-" *)
| |- ?X1 => $t_is_conj; split
| |- (Coq.Init.Logic.iff _ _) => split
| |- (Coq.Init.Logic.not _) => red
end;
$t_not_dep_intros) >>
let rec tauto_intuit flags t_reduce solver =
let t_axioms = tacticIn (axioms flags)
and t_simplif = tacticIn (simplif flags)
and t_is_disj = tacticIn (is_disj flags) in
let lfun = make_lfun [("t_solver", solver)] in
let ist = { default_ist () with lfun = lfun; } in
let vars = [Id.of_string "t_solver"] in
(vars, ist, <:tactic<
let rec t_tauto_intuit :=
($t_simplif;$t_axioms
|| match reverse goal with
| id:forall(_: forall (_: ?X1), ?X2), ?X3|- _ =>
cut X3;
[ intro; clear id; t_tauto_intuit
| cut (forall (_: X1), X2);
[ exact id
| generalize (fun y:X2 => id (fun x:X1 => y)); intro; clear id;
solve [ t_tauto_intuit ]]]
| id:forall (_:not ?X1), ?X3|- _ =>
cut X3;
[ intro; clear id; t_tauto_intuit
| cut (not X1); [ exact id | clear id; intro; solve [t_tauto_intuit ]]]
| |- ?X1 =>
$t_is_disj; solve [left;t_tauto_intuit | right;t_tauto_intuit]
end
||
(* NB: [|- _ -> _] matches any product *)
match goal with | |- forall (_ : _), _ => intro; t_tauto_intuit
| |- _ => $t_reduce;t_solver
end
||
t_solver
) in t_tauto_intuit >>)
let reduction_not_iff _ist =
match !negation_unfolding, unfold_iff () with
| true, true -> <:tactic< unfold Coq.Init.Logic.not, Coq.Init.Logic.iff in * >>
| true, false -> <:tactic< unfold Coq.Init.Logic.not in * >>
| false, true -> <:tactic< unfold Coq.Init.Logic.iff in * >>
| false, false -> <:tactic< idtac >>
let t_reduction_not_iff = tacticIn reduction_not_iff
let intuition_gen ist flags tac =
Proofview.Goal.enter begin fun gl ->
let tac = Value.of_closure ist tac in
let env = Proofview.Goal.env gl in
let vars, ist, intuition = tauto_intuit flags t_reduction_not_iff tac in
let glb_intuition = Tacintern.glob_tactic_env vars env intuition in
eval_tactic_ist ist glb_intuition
end
let tauto_intuitionistic flags =
Proofview.tclORELSE
(intuition_gen (default_ist ()) flags <:tactic<fail>>)
begin function
| Refiner.FailError _ | UserError _ ->
Proofview.tclZERO (UserError ("tauto" , str "tauto failed."))
| e -> Proofview.tclZERO e
end
let coq_nnpp_path =
let dir = List.map Id.of_string ["Classical_Prop";"Logic";"Coq"] in
Libnames.make_path (DirPath.make dir) (Id.of_string "NNPP")
let tauto_classical flags nnpp =
Proofview.tclORELSE
(Tacticals.New.tclTHEN (apply nnpp) (tauto_intuitionistic flags))
begin function
| UserError _ -> Proofview.tclZERO (UserError ("tauto" , str "Classical tauto failed."))
| e -> Proofview.tclZERO e
end
let tauto_gen flags =
(* spiwack: I use [tclBIND (tclUNIT ())] as a way to delay the effect
(in [constr_of_global]) to the application of the tactic. *)
Proofview.tclBIND
(Proofview.tclUNIT ())
begin fun () -> try
let nnpp = Universes.constr_of_global (Nametab.global_of_path coq_nnpp_path) in
(* try intuitionistic version first to avoid an axiom if possible *)
Tacticals.New.tclORELSE (tauto_intuitionistic flags) (tauto_classical flags nnpp)
with Not_found ->
tauto_intuitionistic flags
end
let default_intuition_tac = <:tactic< auto with * >>
(* This is the uniform mode dealing with ->, not, iff and types isomorphic to
/\ and *, \/ and +, False and Empty_set, True and unit, _and_ eq-like types.
For the moment not and iff are still always unfolded. *)
let tauto_uniform_unit_flags = {
binary_mode = true;
binary_mode_bugged_detection = false;
strict_in_contravariant_hyp = true;
strict_in_hyp_and_ccl = true;
strict_unit = false
}
(* This is the compatibility mode (not used) *)
let tauto_legacy_flags = {
binary_mode = true;
binary_mode_bugged_detection = true;
strict_in_contravariant_hyp = true;
strict_in_hyp_and_ccl = false;
strict_unit = false
}
(* This is the improved mode *)
let tauto_power_flags = {
binary_mode = false; (* support n-ary connectives *)
binary_mode_bugged_detection = false;
strict_in_contravariant_hyp = false; (* supports non-regular connectives *)
strict_in_hyp_and_ccl = false;
strict_unit = false
}
let tauto = tauto_gen tauto_uniform_unit_flags
let dtauto = tauto_gen tauto_power_flags
TACTIC EXTEND tauto
| [ "tauto" ] -> [ tauto ]
END
TACTIC EXTEND dtauto
| [ "dtauto" ] -> [ dtauto ]
END
TACTIC EXTEND intuition
| [ "intuition" ] -> [ intuition_gen ist tauto_uniform_unit_flags default_intuition_tac ]
| [ "intuition" tactic(t) ] -> [ intuition_gen ist tauto_uniform_unit_flags t ]
END
TACTIC EXTEND dintuition
| [ "dintuition" ] -> [ intuition_gen ist tauto_power_flags default_intuition_tac ]
| [ "dintuition" tactic(t) ] -> [ intuition_gen ist tauto_power_flags t ]
END
|