1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2016 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open CErrors
open Util
open Names
open Term
open EConstr
open Termops
open Declarations
open Tacmach
open Clenv
open Tactypes
module NamedDecl = Context.Named.Declaration
(************************************************************************)
(* Tacticals re-exported from the Refiner module *)
(************************************************************************)
let tclIDTAC = Refiner.tclIDTAC
let tclIDTAC_MESSAGE = Refiner.tclIDTAC_MESSAGE
let tclORELSE0 = Refiner.tclORELSE0
let tclORELSE = Refiner.tclORELSE
let tclTHEN = Refiner.tclTHEN
let tclTHENLIST = Refiner.tclTHENLIST
let tclMAP = Refiner.tclMAP
let tclTHEN_i = Refiner.tclTHEN_i
let tclTHENFIRST = Refiner.tclTHENFIRST
let tclTHENLAST = Refiner.tclTHENLAST
let tclTHENS = Refiner.tclTHENS
let tclTHENSV = Refiner.tclTHENSV
let tclTHENSFIRSTn = Refiner.tclTHENSFIRSTn
let tclTHENSLASTn = Refiner.tclTHENSLASTn
let tclTHENFIRSTn = Refiner.tclTHENFIRSTn
let tclTHENLASTn = Refiner.tclTHENLASTn
let tclREPEAT = Refiner.tclREPEAT
let tclREPEAT_MAIN = Refiner.tclREPEAT_MAIN
let tclFIRST = Refiner.tclFIRST
let tclSOLVE = Refiner.tclSOLVE
let tclTRY = Refiner.tclTRY
let tclCOMPLETE = Refiner.tclCOMPLETE
let tclAT_LEAST_ONCE = Refiner.tclAT_LEAST_ONCE
let tclFAIL = Refiner.tclFAIL
let tclFAIL_lazy = Refiner.tclFAIL_lazy
let tclDO = Refiner.tclDO
let tclPROGRESS = Refiner.tclPROGRESS
let tclSHOWHYPS = Refiner.tclSHOWHYPS
let tclTHENTRY = Refiner.tclTHENTRY
let tclIFTHENELSE = Refiner.tclIFTHENELSE
let tclIFTHENSELSE = Refiner.tclIFTHENSELSE
let tclIFTHENSVELSE = Refiner.tclIFTHENSVELSE
let tclIFTHENTRYELSEMUST = Refiner.tclIFTHENTRYELSEMUST
(* Synonyms *)
let tclTHENSEQ = tclTHENLIST
(************************************************************************)
(* Tacticals applying on hypotheses *)
(************************************************************************)
let nthDecl m gl =
try List.nth (pf_hyps gl) (m-1)
with Failure _ -> user_err Pp.(str "No such assumption.")
let nthHypId m gl = nthDecl m gl |> NamedDecl.get_id
let nthHyp m gl = mkVar (nthHypId m gl)
let lastDecl gl = nthDecl 1 gl
let lastHypId gl = nthHypId 1 gl
let lastHyp gl = nthHyp 1 gl
let nLastDecls n gl =
try List.firstn n (pf_hyps gl)
with Failure _ -> user_err Pp.(str "Not enough hypotheses in the goal.")
let nLastHypsId n gl = List.map (NamedDecl.get_id) (nLastDecls n gl)
let nLastHyps n gl = List.map mkVar (nLastHypsId n gl)
let onNthDecl m tac gl = tac (nthDecl m gl) gl
let onNthHypId m tac gl = tac (nthHypId m gl) gl
let onNthHyp m tac gl = tac (nthHyp m gl) gl
let onLastDecl = onNthDecl 1
let onLastHypId = onNthHypId 1
let onLastHyp = onNthHyp 1
let onHyps find tac gl = tac (find gl) gl
let onNLastDecls n tac = onHyps (nLastDecls n) tac
let onNLastHypsId n tac = onHyps (nLastHypsId n) tac
let onNLastHyps n tac = onHyps (nLastHyps n) tac
let afterHyp id gl =
fst (List.split_when (NamedDecl.get_id %> Id.equal id) (pf_hyps gl))
(***************************************)
(* Clause Tacticals *)
(***************************************)
(* The following functions introduce several tactic combinators and
functions useful for working with clauses. A clause is either None
or (Some id), where id is an identifier. This type is useful for
defining tactics that may be used either to transform the
conclusion (None) or to transform a hypothesis id (Some id). --
--Eduardo (8/8/97)
*)
let fullGoal gl = None :: List.map Option.make (pf_ids_of_hyps gl)
let onAllHyps tac gl = tclMAP tac (pf_ids_of_hyps gl) gl
let onAllHypsAndConcl tac gl = tclMAP tac (fullGoal gl) gl
let onClause tac cl gls =
let hyps () = pf_ids_of_hyps gls in
tclMAP tac (Locusops.simple_clause_of hyps cl) gls
let onClauseLR tac cl gls =
let hyps () = pf_ids_of_hyps gls in
tclMAP tac (List.rev (Locusops.simple_clause_of hyps cl)) gls
let ifOnHyp pred tac1 tac2 id gl =
if pred (id,pf_get_hyp_typ gl id) then
tac1 id gl
else
tac2 id gl
(************************************************************************)
(* Elimination Tacticals *)
(************************************************************************)
(* The following tacticals allow to apply a tactic to the
branches generated by the application of an elimination
tactic.
Two auxiliary types --branch_args and branch_assumptions-- are
used to keep track of some information about the ``branches'' of
the elimination. *)
type branch_args = {
ity : pinductive; (* the type we were eliminating on *)
largs : constr list; (* its arguments *)
branchnum : int; (* the branch number *)
pred : constr; (* the predicate we used *)
nassums : int; (* number of assumptions/letin to be introduced *)
branchsign : bool list; (* the signature of the branch.
true=assumption, false=let-in *)
branchnames : intro_patterns}
type branch_assumptions = {
ba : branch_args; (* the branch args *)
assums : named_context} (* the list of assumptions introduced *)
open Misctypes
let fix_empty_or_and_pattern nv l =
(* 1- The syntax does not distinguish between "[ ]" for one clause with no
names and "[ ]" for no clause at all *)
(* 2- More generally, we admit "[ ]" for any disjunctive pattern of
arbitrary length *)
match l with
| IntroOrPattern [[]] -> IntroOrPattern (List.make nv [])
| _ -> l
let check_or_and_pattern_size ?loc check_and names branchsigns =
let n = Array.length branchsigns in
let msg p1 p2 = strbrk "a conjunctive pattern made of " ++ int p1 ++ (if p1 == p2 then mt () else str " or " ++ int p2) ++ str " patterns" in
let err1 p1 p2 =
user_err ?loc (str "Expects " ++ msg p1 p2 ++ str ".") in
let errn n =
user_err ?loc (str "Expects a disjunctive pattern with " ++ int n
++ str " branches.") in
let err1' p1 p2 =
user_err ?loc (strbrk "Expects a disjunctive pattern with 1 branch or " ++ msg p1 p2 ++ str ".") in
let errforthcoming ?loc =
user_err ?loc (strbrk "Unexpected non atomic pattern.") in
match names with
| IntroAndPattern l ->
if not (Int.equal n 1) then errn n;
let l' = List.filter (function _,IntroForthcoming _ -> true | _,IntroNaming _ | _,IntroAction _ -> false) l in
if l' != [] then errforthcoming ?loc:(fst (List.hd l'));
if check_and then
let p1 = List.count (fun x -> x) branchsigns.(0) in
let p2 = List.length branchsigns.(0) in
let p = List.length l in
if not (Int.equal p p1 || Int.equal p p2) then err1 p1 p2;
if Int.equal p p1 then
IntroAndPattern
(List.extend branchsigns.(0) (Loc.tag @@ IntroNaming IntroAnonymous) l)
else
names
else
names
| IntroOrPattern ll ->
if not (Int.equal n (List.length ll)) then
if Int.equal n 1 then
let p1 = List.count (fun x -> x) branchsigns.(0) in
let p2 = List.length branchsigns.(0) in
err1' p1 p2 else errn n;
names
let get_and_check_or_and_pattern_gen ?loc check_and names branchsigns =
let names = check_or_and_pattern_size ?loc check_and names branchsigns in
match names with
| IntroAndPattern l -> [|l|]
| IntroOrPattern l -> Array.of_list l
let get_and_check_or_and_pattern ?loc = get_and_check_or_and_pattern_gen ?loc true
let compute_induction_names_gen check_and branchletsigns = function
| None ->
Array.make (Array.length branchletsigns) []
| Some (loc,names) ->
let names = fix_empty_or_and_pattern (Array.length branchletsigns) names in
get_and_check_or_and_pattern_gen check_and ?loc names branchletsigns
let compute_induction_names = compute_induction_names_gen true
(* Compute the let-in signature of case analysis or standard induction scheme *)
let compute_constructor_signatures isrec ((_,k as ity),u) =
let open Term in
let rec analrec c recargs =
match kind_of_term c, recargs with
| Prod (_,_,c), recarg::rest ->
let rest = analrec c rest in
begin match Declareops.dest_recarg recarg with
| Norec | Imbr _ -> true :: rest
| Mrec (_,j) ->
if isrec && Int.equal j k then true :: true :: rest
else true :: rest
end
| LetIn (_,_,_,c), rest -> false :: analrec c rest
| _, [] -> []
| _ -> anomaly (Pp.str "compute_constructor_signatures.")
in
let (mib,mip) = Global.lookup_inductive ity in
let n = mib.mind_nparams in
let lc =
Array.map (fun c -> snd (decompose_prod_n_assum n c)) mip.mind_nf_lc in
let lrecargs = Declareops.dest_subterms mip.mind_recargs in
Array.map2 analrec lc lrecargs
let elimination_sort_of_goal gl =
pf_apply Retyping.get_sort_family_of gl (pf_concl gl)
let elimination_sort_of_hyp id gl =
pf_apply Retyping.get_sort_family_of gl (pf_get_hyp_typ gl id)
let elimination_sort_of_clause = function
| None -> elimination_sort_of_goal
| Some id -> elimination_sort_of_hyp id
let pf_with_evars glsev k gls =
let evd, a = glsev gls in
tclTHEN (Refiner.tclEVARS evd) (k a) gls
let pf_constr_of_global gr k =
pf_with_evars (fun gls -> on_snd EConstr.of_constr (pf_apply Evd.fresh_global gls gr)) k
(** Tacticals of Ltac defined directly in term of Proofview *)
module New = struct
open Proofview
open Proofview.Notations
open Tacmach.New
let tclIDTAC = tclUNIT ()
let tclTHEN t1 t2 =
t1 <*> t2
let tclFAIL lvl msg =
tclZERO (Refiner.FailError (lvl,lazy msg))
let tclZEROMSG ?loc msg =
let err = UserError (None, msg) in
let info = match loc with
| None -> Exninfo.null
| Some loc -> Loc.add_loc Exninfo.null loc
in
tclZERO ~info err
let catch_failerror e =
try
Refiner.catch_failerror e;
tclUNIT ()
with e when CErrors.noncritical e -> tclZERO e
(* spiwack: I chose to give the Ltac + the same semantics as
[Proofview.tclOR], however, for consistency with the or-else
tactical, we may consider wrapping the first argument with
[tclPROGRESS]. It strikes me as a bad idea, but consistency can be
considered valuable. *)
let tclOR t1 t2 =
tclINDEPENDENT begin
Proofview.tclOR
t1
begin fun e ->
catch_failerror e <*> t2
end
end
let tclORD t1 t2 =
tclINDEPENDENT begin
Proofview.tclOR
t1
begin fun e ->
catch_failerror e <*> t2 ()
end
end
let tclONCE = Proofview.tclONCE
let tclEXACTLY_ONCE t = Proofview.tclEXACTLY_ONCE (Refiner.FailError(0,lazy (assert false))) t
let tclIFCATCH t tt te =
tclINDEPENDENT begin
Proofview.tclIFCATCH t
tt
(fun e -> catch_failerror e <*> te ())
end
let tclORELSE0 t1 t2 =
tclINDEPENDENT begin
tclORELSE
t1
begin fun e ->
catch_failerror e <*> t2
end
end
let tclORELSE0L t1 t2 =
tclINDEPENDENTL begin
tclORELSE
t1
begin fun e ->
catch_failerror e <*> t2
end
end
let tclORELSE t1 t2 =
tclORELSE0 (tclPROGRESS t1) t2
let tclTHENS3PARTS t1 l1 repeat l2 =
tclINDEPENDENT begin
t1 <*>
Proofview.tclORELSE (* converts the [SizeMismatch] error into an ltac error *)
begin tclEXTEND (Array.to_list l1) repeat (Array.to_list l2) end
begin function (e, info) -> match e with
| SizeMismatch (i,_)->
let errmsg =
str"Incorrect number of goals" ++ spc() ++
str"(expected "++int i++str(String.plural i " tactic") ++ str")"
in
tclFAIL 0 errmsg
| reraise -> tclZERO ~info reraise
end
end
let tclTHENSFIRSTn t1 l repeat =
tclTHENS3PARTS t1 l repeat [||]
let tclTHENFIRSTn t1 l =
tclTHENSFIRSTn t1 l (tclUNIT())
let tclTHENFIRST t1 t2 =
tclTHENFIRSTn t1 [|t2|]
let tclTHENLASTn t1 l =
tclTHENS3PARTS t1 [||] (tclUNIT()) l
let tclTHENLAST t1 t2 = tclTHENLASTn t1 [|t2|]
let tclTHENS t l =
tclINDEPENDENT begin
t <*>Proofview.tclORELSE (* converts the [SizeMismatch] error into an ltac error *)
begin tclDISPATCH l end
begin function (e, info) -> match e with
| SizeMismatch (i,_)->
let errmsg =
str"Incorrect number of goals" ++ spc() ++
str"(expected "++int i++str(String.plural i " tactic") ++ str")"
in
tclFAIL 0 errmsg
| reraise -> tclZERO ~info reraise
end
end
let tclTHENLIST l =
List.fold_left tclTHEN (tclUNIT()) l
(* [tclMAP f [x1..xn]] builds [(f x1);(f x2);...(f xn)] *)
let tclMAP tacfun l =
List.fold_right (fun x -> (tclTHEN (tacfun x))) l (tclUNIT())
let tclTRY t =
tclORELSE0 t (tclUNIT ())
let tclTRYb t =
tclORELSE0L (t <*> tclUNIT true) (tclUNIT false)
let tclIFTHENELSE t1 t2 t3 =
tclINDEPENDENT begin
Proofview.tclIFCATCH t1
(fun () -> t2)
(fun (e, info) -> Proofview.tclORELSE t3 (fun e' -> tclZERO ~info e))
end
let tclIFTHENSVELSE t1 a t3 =
Proofview.tclIFCATCH t1
(fun () -> tclDISPATCH (Array.to_list a))
(fun _ -> t3)
let tclIFTHENTRYELSEMUST t1 t2 =
tclIFTHENELSE t1 (tclTRY t2) t2
(* Try the first tactic that does not fail in a list of tactics *)
let rec tclFIRST = function
| [] -> tclZEROMSG (str"No applicable tactic.")
| t::rest -> tclORELSE0 t (tclFIRST rest)
let rec tclFIRST_PROGRESS_ON tac = function
| [] -> tclFAIL 0 (str "No applicable tactic")
| [a] -> tac a (* so that returned failure is the one from last item *)
| a::tl -> tclORELSE (tac a) (tclFIRST_PROGRESS_ON tac tl)
let rec tclDO n t =
if n < 0 then
tclZEROMSG (str"Wrong argument : Do needs a positive integer.")
else if n = 0 then tclUNIT ()
else if n = 1 then t
else tclTHEN t (tclDO (n-1) t)
let rec tclREPEAT0 t =
tclINDEPENDENT begin
Proofview.tclIFCATCH t
(fun () -> tclCHECKINTERRUPT <*> tclREPEAT0 t)
(fun e -> catch_failerror e <*> tclUNIT ())
end
let tclREPEAT t =
tclREPEAT0 (tclPROGRESS t)
let rec tclREPEAT_MAIN0 t =
Proofview.tclIFCATCH t
(fun () -> tclTRYFOCUS 1 1 (tclREPEAT_MAIN0 t))
(fun e -> catch_failerror e <*> tclUNIT ())
let tclREPEAT_MAIN t =
tclREPEAT_MAIN0 (tclPROGRESS t)
let tclCOMPLETE t =
t >>= fun res ->
(tclINDEPENDENT
(tclZEROMSG (str"Proof is not complete."))
) <*>
tclUNIT res
(* Try the first thats solves the current goal *)
let tclSOLVE tacl = tclFIRST (List.map tclCOMPLETE tacl)
let tclPROGRESS t =
Proofview.tclINDEPENDENT (Proofview.tclPROGRESS t)
(* Select a subset of the goals *)
let tclSELECT = function
| Vernacexpr.SelectNth i -> Proofview.tclFOCUS i i
| Vernacexpr.SelectList l -> Proofview.tclFOCUSLIST l
| Vernacexpr.SelectId id -> Proofview.tclFOCUSID id
| Vernacexpr.SelectAll -> fun tac -> tac
(* Check that holes in arguments have been resolved *)
let check_evars env sigma extsigma origsigma =
let rec is_undefined_up_to_restriction sigma evk =
if Evd.mem origsigma evk then None else
let evi = Evd.find sigma evk in
match Evd.evar_body evi with
| Evd.Evar_empty -> Some (evk,evi)
| Evd.Evar_defined c -> match Term.kind_of_term c with
| Term.Evar (evk,l) -> is_undefined_up_to_restriction sigma evk
| _ ->
(* We make the assumption that there is no way to refine an
evar remaining after typing from the initial term given to
apply/elim and co tactics, is it correct? *)
None in
let rest =
Evd.fold_undefined (fun evk evi acc ->
match is_undefined_up_to_restriction sigma evk with
| Some (evk',evi) -> (evk',evi)::acc
| _ -> acc)
extsigma []
in
match rest with
| [] -> ()
| (evk,evi) :: _ ->
let (loc,_) = evi.Evd.evar_source in
Pretype_errors.error_unsolvable_implicit ?loc env sigma evk None
let tclWITHHOLES accept_unresolved_holes tac sigma =
tclEVARMAP >>= fun sigma_initial ->
if sigma == sigma_initial then tac
else
let check_evars_if x =
if not accept_unresolved_holes then
tclEVARMAP >>= fun sigma_final ->
tclENV >>= fun env ->
try
let () = check_evars env sigma_final sigma sigma_initial in
tclUNIT x
with e when CErrors.noncritical e ->
tclZERO e
else
tclUNIT x
in
Proofview.Unsafe.tclEVARS sigma <*> tac >>= check_evars_if
let tclDELAYEDWITHHOLES check x tac =
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let (sigma, x) = x env sigma in
tclWITHHOLES check (tac x) sigma
end
let tclTIMEOUT n t =
Proofview.tclOR
(Proofview.tclTIMEOUT n t)
begin function (e, info) -> match e with
| Proofview.Timeout as e -> Proofview.tclZERO (Refiner.FailError (0,lazy (CErrors.print e)))
| e -> Proofview.tclZERO ~info e
end
let tclTIME s t =
Proofview.tclTIME s t
let nthDecl m gl =
let hyps = Proofview.Goal.hyps gl in
try
List.nth hyps (m-1)
with Failure _ -> CErrors.user_err Pp.(str "No such assumption.")
let nLastDecls gl n =
try List.firstn n (Proofview.Goal.hyps gl)
with Failure _ -> CErrors.user_err Pp.(str "Not enough hypotheses in the goal.")
let nthHypId m gl =
(** We only use [id] *)
let gl = Proofview.Goal.assume gl in
nthDecl m gl |> NamedDecl.get_id
let nthHyp m gl =
mkVar (nthHypId m gl)
let onNthHypId m tac =
Proofview.Goal.enter begin fun gl -> tac (nthHypId m gl) end
let onNthHyp m tac =
Proofview.Goal.enter begin fun gl -> tac (nthHyp m gl) end
let onLastHypId = onNthHypId 1
let onLastHyp = onNthHyp 1
let onNthDecl m tac =
Proofview.Goal.enter begin fun gl ->
Proofview.tclUNIT (nthDecl m gl) >>= tac
end
let onLastDecl = onNthDecl 1
let ifOnHyp pred tac1 tac2 id =
Proofview.Goal.enter begin fun gl ->
let typ = Tacmach.New.pf_get_hyp_typ id gl in
if pred (id,typ) then
tac1 id
else
tac2 id
end
let onHyps find tac = Proofview.Goal.enter begin fun gl -> tac (find gl) end
let afterHyp id tac =
Proofview.Goal.enter begin fun gl ->
let hyps = Proofview.Goal.hyps (Proofview.Goal.assume gl) in
let rem, _ = List.split_when (NamedDecl.get_id %> Id.equal id) hyps in
tac rem
end
let fullGoal gl =
let hyps = Tacmach.New.pf_ids_of_hyps gl in
None :: List.map Option.make hyps
let tryAllHyps tac =
Proofview.Goal.enter begin fun gl ->
let hyps = Tacmach.New.pf_ids_of_hyps gl in
tclFIRST_PROGRESS_ON tac hyps
end
let tryAllHypsAndConcl tac =
Proofview.Goal.enter begin fun gl ->
tclFIRST_PROGRESS_ON tac (fullGoal gl)
end
let onClause tac cl =
Proofview.Goal.enter begin fun gl ->
let hyps = Tacmach.New.pf_ids_of_hyps gl in
tclMAP tac (Locusops.simple_clause_of (fun () -> hyps) cl)
end
(* Find the right elimination suffix corresponding to the sort of the goal *)
(* c should be of type A1->.. An->B with B an inductive definition *)
let general_elim_then_using mk_elim
isrec allnames tac predicate ind (c, t) =
Proofview.Goal.enter begin fun gl ->
let sigma, elim = mk_elim ind gl in
let ind = on_snd (fun u -> EInstance.kind sigma u) ind in
Proofview.tclTHEN (Proofview.Unsafe.tclEVARS sigma)
(Proofview.Goal.enter begin fun gl ->
let indclause = mk_clenv_from gl (c, t) in
(* applying elimination_scheme just a little modified *)
let elimclause = mk_clenv_from gl (elim,Tacmach.New.pf_unsafe_type_of gl elim) in
let indmv =
match EConstr.kind elimclause.evd (last_arg elimclause.evd elimclause.templval.Evd.rebus) with
| Meta mv -> mv
| _ -> anomaly (str"elimination.")
in
let pmv =
let p, _ = decompose_app elimclause.evd elimclause.templtyp.Evd.rebus in
match EConstr.kind elimclause.evd p with
| Meta p -> p
| _ ->
let name_elim =
match EConstr.kind sigma elim with
| Const (kn, _) -> string_of_con kn
| Var id -> string_of_id id
| _ -> "\b"
in
user_err ~hdr:"Tacticals.general_elim_then_using"
(str "The elimination combinator " ++ str name_elim ++ str " is unknown.")
in
let elimclause' = clenv_fchain ~with_univs:false indmv elimclause indclause in
let branchsigns = compute_constructor_signatures isrec ind in
let brnames = compute_induction_names_gen false branchsigns allnames in
let flags = Unification.elim_flags () in
let elimclause' =
match predicate with
| None -> elimclause'
| Some p -> clenv_unify ~flags Reduction.CONV (mkMeta pmv) p elimclause'
in
let clenv' = clenv_unique_resolver ~flags elimclause' gl in
let after_tac i =
let (hd,largs) = decompose_app clenv'.evd clenv'.templtyp.Evd.rebus in
let ba = { branchsign = branchsigns.(i);
branchnames = brnames.(i);
nassums = List.length branchsigns.(i);
branchnum = i+1;
ity = ind;
largs = List.map (clenv_nf_meta clenv') largs;
pred = clenv_nf_meta clenv' hd }
in
tac ba
in
let branchtacs = List.init (Array.length branchsigns) after_tac in
Proofview.tclTHEN
(Clenvtac.clenv_refine false clenv')
(Proofview.tclEXTEND [] tclIDTAC branchtacs)
end) end
let elimination_sort_of_goal gl =
(** Retyping will expand evars anyway. *)
let c = Proofview.Goal.concl (Goal.assume gl) in
pf_apply Retyping.get_sort_family_of gl c
let elimination_sort_of_hyp id gl =
(** Retyping will expand evars anyway. *)
let c = pf_get_hyp_typ id (Goal.assume gl) in
pf_apply Retyping.get_sort_family_of gl c
let elimination_sort_of_clause id gl = match id with
| None -> elimination_sort_of_goal gl
| Some id -> elimination_sort_of_hyp id gl
(* computing the case/elim combinators *)
let gl_make_elim ind = begin fun gl ->
let gr = Indrec.lookup_eliminator (fst ind) (elimination_sort_of_goal gl) in
let (sigma, c) = pf_apply Evd.fresh_global gl gr in
(sigma, EConstr.of_constr c)
end
let gl_make_case_dep (ind, u) = begin fun gl ->
let sigma = project gl in
let u = EInstance.kind (project gl) u in
let (sigma, r) = Indrec.build_case_analysis_scheme (pf_env gl) sigma (ind, u) true
(elimination_sort_of_goal gl)
in
(sigma, EConstr.of_constr r)
end
let gl_make_case_nodep (ind, u) = begin fun gl ->
let sigma = project gl in
let u = EInstance.kind sigma u in
let (sigma, r) = Indrec.build_case_analysis_scheme (pf_env gl) sigma (ind, u) false
(elimination_sort_of_goal gl)
in
(sigma, EConstr.of_constr r)
end
let make_elim_branch_assumptions ba hyps =
let assums =
try List.rev (List.firstn ba.nassums hyps)
with Failure _ -> anomaly (Pp.str "make_elim_branch_assumptions.") in
{ ba = ba; assums = assums }
let elim_on_ba tac ba =
Proofview.Goal.enter begin fun gl ->
let branches = make_elim_branch_assumptions ba (Proofview.Goal.hyps gl) in
tac branches
end
let case_on_ba tac ba =
Proofview.Goal.enter begin fun gl ->
let branches = make_elim_branch_assumptions ba (Proofview.Goal.hyps gl) in
tac branches
end
let elimination_then tac c =
Proofview.Goal.enter begin fun gl ->
let (ind,t) = pf_reduce_to_quantified_ind gl (pf_unsafe_type_of gl c) in
let isrec,mkelim =
match (Global.lookup_mind (fst (fst ind))).mind_record with
| None -> true,gl_make_elim
| Some _ -> false,gl_make_case_dep
in
general_elim_then_using mkelim isrec None tac None ind (c, t)
end
let case_then_using =
general_elim_then_using gl_make_case_dep false
let case_nodep_then_using =
general_elim_then_using gl_make_case_nodep false
let pf_constr_of_global ref =
Proofview.tclEVARMAP >>= fun sigma ->
Proofview.tclENV >>= fun env ->
let (sigma, c) = Evd.fresh_global env sigma ref in
let c = EConstr.of_constr c in
Proofview.Unsafe.tclEVARS sigma <*> Proofview.tclUNIT c
end
|