1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Constrintern
open Patternops
open Pp
open Genredexpr
open Glob_term
open Glob_ops
open Tacred
open Errors
open Util
open Names
open Nameops
open Libnames
open Globnames
open Nametab
open Pfedit
open Proof_type
open Refiner
open Tacmach
open Tactic_debug
open Constrexpr
open Term
open Termops
open Tacexpr
open Genarg
open Stdarg
open Constrarg
open Printer
open Pretyping
module Monad_ = Monad
open Evd
open Misctypes
open Locus
open Tacintern
open Taccoerce
open Proofview.Notations
let safe_msgnl s =
Proofview.NonLogical.catch
(Proofview.NonLogical.print (s++fnl()))
(fun _ -> Proofview.NonLogical.print (str "bug in the debugger: an exception is raised while printing debug information"++fnl()))
type value = tlevel generic_argument
(* Values for interpretation *)
type tacvalue =
| VFun of ltac_trace * value Id.Map.t *
Id.t option list * glob_tactic_expr
| VRec of value Id.Map.t ref * glob_tactic_expr
let (wit_tacvalue : (Empty.t, Empty.t, tacvalue) Genarg.genarg_type) =
Genarg.create_arg None "tacvalue"
let of_tacvalue v = in_gen (topwit wit_tacvalue) v
let to_tacvalue v = out_gen (topwit wit_tacvalue) v
module TacStore = Geninterp.TacStore
let f_avoid_ids : Id.t list TacStore.field = TacStore.field ()
(* ids inherited from the call context (needed to get fresh ids) *)
let f_debug : debug_info TacStore.field = TacStore.field ()
let f_trace : ltac_trace TacStore.field = TacStore.field ()
(* Signature for interpretation: val_interp and interpretation functions *)
type interp_sign = Geninterp.interp_sign = {
lfun : value Id.Map.t;
extra : TacStore.t }
let extract_trace ist = match TacStore.get ist.extra f_trace with
| None -> []
| Some l -> l
module Value = struct
include Taccoerce.Value
let of_closure ist tac =
let closure = VFun (extract_trace ist, ist.lfun, [], tac) in
of_tacvalue closure
end
let dloc = Loc.ghost
let catching_error call_trace fail e =
let inner_trace =
Option.default [] (Exninfo.get e ltac_trace_info)
in
if List.is_empty call_trace && List.is_empty inner_trace then fail e
else begin
assert (Errors.noncritical e); (* preserved invariant *)
let new_trace = inner_trace @ call_trace in
let located_exc = Exninfo.add e ltac_trace_info new_trace in
fail located_exc
end
let catch_error call_trace f x =
try f x
with e when Errors.noncritical e ->
let e = Errors.push e in
catching_error call_trace raise e
let catch_error_tac call_trace tac =
Proofview.tclORELSE
tac
(catching_error call_trace Proofview.tclZERO)
let curr_debug ist = match TacStore.get ist.extra f_debug with
| None -> DebugOff
| Some level -> level
(** TODO: unify printing of generic Ltac values in case of coercion failure. *)
(* Displays a value *)
let pr_value env v =
let v = Value.normalize v in
if has_type v (topwit wit_tacvalue) then str "a tactic"
else if has_type v (topwit wit_constr_context) then
let c = out_gen (topwit wit_constr_context) v in
match env with
| Some env -> pr_lconstr_env env c
| _ -> str "a term"
else if has_type v (topwit wit_constr) then
let c = out_gen (topwit wit_constr) v in
match env with
| Some env -> pr_lconstr_env env c
| _ -> str "a term"
else if has_type v (topwit wit_constr_under_binders) then
let c = out_gen (topwit wit_constr_under_binders) v in
match env with
| Some env -> pr_lconstr_under_binders_env env c
| _ -> str "a term"
else
str "a value of type" ++ spc () ++ pr_argument_type (genarg_tag v)
let pr_closure env ist body =
let pp_body = Pptactic.pr_glob_tactic env body in
let pr_sep () = fnl () in
let pr_iarg (id, arg) =
let arg = pr_argument_type (genarg_tag arg) in
hov 0 (pr_id id ++ spc () ++ str ":" ++ spc () ++ arg)
in
let pp_iargs = v 0 (prlist_with_sep pr_sep pr_iarg (Id.Map.bindings ist)) in
pp_body ++ fnl() ++ str "in environment " ++ fnl() ++ pp_iargs
let pr_inspect env expr result =
let pp_expr = Pptactic.pr_glob_tactic env expr in
let pp_result =
if has_type result (topwit wit_tacvalue) then
match to_tacvalue result with
| VFun (_, ist, ul, b) ->
let body = if List.is_empty ul then b else (TacFun (ul, b)) in
str "a closure with body " ++ fnl() ++ pr_closure env ist body
| VRec (ist, body) ->
str "a recursive closure" ++ fnl () ++ pr_closure env !ist body
else
let pp_type = pr_argument_type (genarg_tag result) in
str "an object of type" ++ spc () ++ pp_type
in
pp_expr ++ fnl() ++ str "this is " ++ pp_result
(* Transforms an id into a constr if possible, or fails with Not_found *)
let constr_of_id env id =
Term.mkVar (let _ = Environ.lookup_named id env in id)
(* To embed tactics *)
let ((tactic_in : (interp_sign -> glob_tactic_expr) -> Dyn.t),
(tactic_out : Dyn.t -> (interp_sign -> glob_tactic_expr))) =
Dyn.create "tactic"
let ((value_in : value -> Dyn.t),
(value_out : Dyn.t -> value)) = Dyn.create "value"
let valueIn t = TacDynamic (Loc.ghost, value_in t)
(** Generic arguments : table of interpretation functions *)
let push_trace call ist = match TacStore.get ist.extra f_trace with
| None -> [call]
| Some trace -> call :: trace
let propagate_trace ist loc id v =
let v = Value.normalize v in
if has_type v (topwit wit_tacvalue) then
let tacv = to_tacvalue v in
match tacv with
| VFun (_,lfun,it,b) ->
let t = if List.is_empty it then b else TacFun (it,b) in
let ans = VFun (push_trace(loc,LtacVarCall (id,t)) ist,lfun,it,b) in
of_tacvalue ans
| _ -> v
else v
let append_trace trace v =
let v = Value.normalize v in
if has_type v (topwit wit_tacvalue) then
match to_tacvalue v with
| VFun (trace',lfun,it,b) -> of_tacvalue (VFun (trace'@trace,lfun,it,b))
| _ -> v
else v
(* Dynamically check that an argument is a tactic *)
let coerce_to_tactic loc id v =
let v = Value.normalize v in
let fail () = user_err_loc
(loc, "", str "Variable " ++ pr_id id ++ str " should be bound to a tactic.")
in
let v = Value.normalize v in
if has_type v (topwit wit_tacvalue) then
let tacv = to_tacvalue v in
match tacv with
| VFun _ -> v
| _ -> fail ()
else fail ()
let value_of_ident id =
in_gen (topwit wit_intro_pattern)
(Loc.ghost, IntroNaming (IntroIdentifier id))
let (+++) lfun1 lfun2 = Id.Map.fold Id.Map.add lfun1 lfun2
let extend_values_with_bindings (ln,lm) lfun =
let of_cub c = match c with
| [], c -> Value.of_constr c
| _ -> in_gen (topwit wit_constr_under_binders) c
in
(* For compatibility, bound variables are visible only if no other
binding of the same name exists *)
let accu = Id.Map.map value_of_ident ln in
let accu = lfun +++ accu in
Id.Map.fold (fun id c accu -> Id.Map.add id (of_cub c) accu) lm accu
(***************************************************************************)
(* Evaluation/interpretation *)
let is_variable env id =
Id.List.mem id (ids_of_named_context (Environ.named_context env))
(* Debug reference *)
let debug = ref DebugOff
(* Sets the debugger mode *)
let set_debug pos = debug := pos
(* Gives the state of debug *)
let get_debug () = !debug
let debugging_step ist pp = match curr_debug ist with
| DebugOn lev ->
safe_msgnl (str "Level " ++ int lev ++ str": " ++ pp () ++ fnl())
| _ -> Proofview.NonLogical.ret ()
let debugging_exception_step ist signal_anomaly e pp =
let explain_exc =
if signal_anomaly then explain_logic_error
else explain_logic_error_no_anomaly in
debugging_step ist (fun () ->
pp() ++ spc() ++ str "raised the exception" ++ fnl() ++ !explain_exc e)
let error_ltac_variable loc id env v s =
user_err_loc (loc, "", str "Ltac variable " ++ pr_id id ++
strbrk " is bound to" ++ spc () ++ pr_value env v ++ spc () ++
strbrk "which cannot be coerced to " ++ str s ++ str".")
(* Raise Not_found if not in interpretation sign *)
let try_interp_ltac_var coerce ist env (loc,id) =
let v = Id.Map.find id ist.lfun in
try coerce v with CannotCoerceTo s -> error_ltac_variable loc id env v s
let interp_ltac_var coerce ist env locid =
try try_interp_ltac_var coerce ist env locid
with Not_found -> anomaly (str "Detected '" ++ Id.print (snd locid) ++ str "' as ltac var at interning time")
let interp_ident_gen fresh ist env id =
try try_interp_ltac_var (coerce_to_ident fresh env) ist (Some env) (dloc,id)
with Not_found -> id
let interp_ident = interp_ident_gen false
let interp_fresh_ident = interp_ident_gen true
let pf_interp_ident id gl = interp_ident_gen false id (pf_env gl)
(* Interprets an optional identifier which must be fresh *)
let interp_fresh_name ist env = function
| Anonymous -> Anonymous
| Name id -> Name (interp_fresh_ident ist env id)
let interp_intro_pattern_var loc ist env id =
try try_interp_ltac_var (coerce_to_intro_pattern env) ist (Some env) (loc,id)
with Not_found -> IntroNaming (IntroIdentifier id)
let interp_intro_pattern_naming_var loc ist env id =
try try_interp_ltac_var (coerce_to_intro_pattern_naming env) ist (Some env) (loc,id)
with Not_found -> IntroIdentifier id
let interp_hint_base ist s =
try try_interp_ltac_var coerce_to_hint_base ist None (dloc,Id.of_string s)
with Not_found -> s
let interp_int ist locid =
try try_interp_ltac_var coerce_to_int ist None locid
with Not_found ->
user_err_loc(fst locid,"interp_int",
str "Unbound variable " ++ pr_id (snd locid) ++ str".")
let interp_int_or_var ist = function
| ArgVar locid -> interp_int ist locid
| ArgArg n -> n
let interp_int_or_var_as_list ist = function
| ArgVar (_,id as locid) ->
(try coerce_to_int_or_var_list (Id.Map.find id ist.lfun)
with Not_found | CannotCoerceTo _ -> [ArgArg (interp_int ist locid)])
| ArgArg n as x -> [x]
let interp_int_or_var_list ist l =
List.flatten (List.map (interp_int_or_var_as_list ist) l)
(* Interprets a bound variable (especially an existing hypothesis) *)
let interp_hyp ist env (loc,id as locid) =
(* Look first in lfun for a value coercible to a variable *)
try try_interp_ltac_var (coerce_to_hyp env) ist (Some env) locid
with Not_found ->
(* Then look if bound in the proof context at calling time *)
if is_variable env id then id
else Loc.raise loc (Logic.RefinerError (Logic.NoSuchHyp id))
let interp_hyp_list_as_list ist env (loc,id as x) =
try coerce_to_hyp_list env (Id.Map.find id ist.lfun)
with Not_found | CannotCoerceTo _ -> [interp_hyp ist env x]
let interp_hyp_list ist gl l =
List.flatten (List.map (interp_hyp_list_as_list ist gl) l)
let interp_move_location ist gl = function
| MoveAfter id -> MoveAfter (interp_hyp ist gl id)
| MoveBefore id -> MoveBefore (interp_hyp ist gl id)
| MoveFirst -> MoveFirst
| MoveLast -> MoveLast
let interp_reference ist env = function
| ArgArg (_,r) -> r
| ArgVar (loc, id) ->
try try_interp_ltac_var (coerce_to_reference env) ist (Some env) (loc, id)
with Not_found ->
try
let (v, _, _) = Environ.lookup_named id env in
VarRef v
with Not_found -> error_global_not_found_loc loc (qualid_of_ident id)
let try_interp_evaluable env (loc, id) =
let v = Environ.lookup_named id env in
match v with
| (_, Some _, _) -> EvalVarRef id
| _ -> error_not_evaluable (VarRef id)
let interp_evaluable ist env = function
| ArgArg (r,Some (loc,id)) ->
(* Maybe [id] has been introduced by Intro-like tactics *)
begin
try try_interp_evaluable env (loc, id)
with Not_found ->
match r with
| EvalConstRef _ -> r
| _ -> error_global_not_found_loc loc (qualid_of_ident id)
end
| ArgArg (r,None) -> r
| ArgVar (loc, id) ->
try try_interp_ltac_var (coerce_to_evaluable_ref env) ist (Some env) (loc, id)
with Not_found ->
try try_interp_evaluable env (loc, id)
with Not_found -> error_global_not_found_loc loc (qualid_of_ident id)
(* Interprets an hypothesis name *)
let interp_occurrences ist occs =
Locusops.occurrences_map (interp_int_or_var_list ist) occs
let interp_hyp_location ist gl ((occs,id),hl) =
((interp_occurrences ist occs,interp_hyp ist gl id),hl)
let interp_clause ist gl { onhyps=ol; concl_occs=occs } : clause =
{ onhyps=Option.map(List.map (interp_hyp_location ist gl)) ol;
concl_occs=interp_occurrences ist occs }
(* Interpretation of constructions *)
(* Extract the constr list from lfun *)
let extract_ltac_constr_values ist env =
let fold id v accu =
try
let c = coerce_to_constr env v in
Id.Map.add id c accu
with CannotCoerceTo _ -> accu
in
Id.Map.fold fold ist.lfun Id.Map.empty
(** ppedrot: I have changed the semantics here. Before this patch, closure was
implemented as a list and a variable could be bound several times with
different types, resulting in its possible appearance on both sides. This
could barely be defined as a feature... *)
(* Extract the identifier list from lfun: join all branches (what to do else?)*)
let rec intropattern_ids (loc,pat) = match pat with
| IntroNaming (IntroIdentifier id) -> [id]
| IntroAction (IntroOrAndPattern ll) ->
List.flatten (List.map intropattern_ids (List.flatten ll))
| IntroAction (IntroInjection l) ->
List.flatten (List.map intropattern_ids l)
| IntroAction (IntroApplyOn (c,pat)) -> intropattern_ids pat
| IntroNaming (IntroWildcard | IntroAnonymous | IntroFresh _)
| IntroAction (IntroRewrite _)
| IntroForthcoming _ -> []
let extract_ids ids lfun =
let fold id v accu =
let v = Value.normalize v in
if has_type v (topwit wit_intro_pattern) then
let (_, ipat) = out_gen (topwit wit_intro_pattern) v in
if Id.List.mem id ids then accu
else accu @ intropattern_ids (dloc, ipat)
else accu
in
Id.Map.fold fold lfun []
let default_fresh_id = Id.of_string "H"
let interp_fresh_id ist env l =
let ids = List.map_filter (function ArgVar (_, id) -> Some id | _ -> None) l in
let avoid = match TacStore.get ist.extra f_avoid_ids with
| None -> []
| Some l -> l
in
let avoid = (extract_ids ids ist.lfun) @ avoid in
let id =
if List.is_empty l then default_fresh_id
else
let s =
String.concat "" (List.map (function
| ArgArg s -> s
| ArgVar (_,id) -> Id.to_string (interp_ident ist env id)) l) in
let s = if Lexer.is_keyword s then s^"0" else s in
Id.of_string s in
Tactics.fresh_id_in_env avoid id env
(* Extract the uconstr list from lfun *)
let extract_ltac_constr_context ist env =
let open Glob_term in
let fold id v ({idents;typed;untyped} as accu) =
try
let c = coerce_to_uconstr env v in
{ idents ; typed ; untyped = Id.Map.add id c untyped }
with CannotCoerceTo _ -> try
let c = coerce_to_constr env v in
{ idents ; typed = Id.Map.add id c typed ; untyped }
with CannotCoerceTo _ -> try
let id' = coerce_to_ident false env v in
{ idents = Id.Map.add id id' idents ; typed ; untyped }
with CannotCoerceTo _ ->
accu
in
let empty = { idents = Id.Map.empty ;typed = Id.Map.empty ; untyped = Id.Map.empty } in
Id.Map.fold fold ist.lfun empty
(** Significantly simpler than [interp_constr], to interpret an
untyped constr, it suffices to adjoin a closure environment. *)
let interp_uconstr ist env = function
| (term,None) ->
{ closure = extract_ltac_constr_context ist env ; term }
| (_,Some ce) ->
let ( {typed ; untyped } as closure) = extract_ltac_constr_context ist env in
let ltacvars = {
Constrintern.ltac_vars = Id.(Set.union (Map.domain typed) (Map.domain untyped));
ltac_bound = Id.Map.domain ist.lfun;
} in
{ closure ; term = intern_gen WithoutTypeConstraint ~ltacvars env ce }
let interp_gen kind ist allow_patvar flags env sigma (c,ce) =
let constrvars = extract_ltac_constr_context ist env in
let vars = {
Pretyping.ltac_constrs = constrvars.typed;
Pretyping.ltac_uconstrs = constrvars.untyped;
Pretyping.ltac_idents = constrvars.idents;
Pretyping.ltac_genargs = ist.lfun;
} in
let c = match ce with
| None -> c
(* If at toplevel (ce<>None), the error can be due to an incorrect
context at globalization time: we retype with the now known
intros/lettac/inversion hypothesis names *)
| Some c ->
let constr_context =
Id.Set.union
(Id.Map.domain constrvars.typed)
(Id.Set.union
(Id.Map.domain constrvars.untyped)
(Id.Map.domain constrvars.idents))
in
let ltacvars = {
ltac_vars = constr_context;
ltac_bound = Id.Map.domain ist.lfun;
} in
intern_gen kind ~allow_patvar ~ltacvars env c
in
let trace =
push_trace (loc_of_glob_constr c,LtacConstrInterp (c,vars)) ist in
let (evd,c) =
catch_error trace (understand_ltac flags sigma env vars kind) c
in
(* spiwack: to avoid unnecessary modifications of tacinterp, as this
function already use effect, I call [run] hoping it doesn't mess
up with any assumption. *)
Proofview.NonLogical.run (db_constr (curr_debug ist) env c);
(evd,c)
let constr_flags = {
use_typeclasses = true;
use_unif_heuristics = true;
use_hook = Some solve_by_implicit_tactic;
fail_evar = true;
expand_evars = true }
(* Interprets a constr; expects evars to be solved *)
let interp_constr_gen kind ist env sigma c =
interp_gen kind ist false constr_flags env sigma c
let interp_constr = interp_constr_gen WithoutTypeConstraint
let interp_type = interp_constr_gen IsType
let open_constr_use_classes_flags = {
use_typeclasses = true;
use_unif_heuristics = true;
use_hook = Some solve_by_implicit_tactic;
fail_evar = false;
expand_evars = true }
let open_constr_no_classes_flags = {
use_typeclasses = false;
use_unif_heuristics = true;
use_hook = Some solve_by_implicit_tactic;
fail_evar = false;
expand_evars = true }
let pure_open_constr_flags = {
use_typeclasses = false;
use_unif_heuristics = true;
use_hook = None;
fail_evar = false;
expand_evars = false }
(* Interprets an open constr *)
let interp_open_constr ?(expected_type=WithoutTypeConstraint) ist =
let flags =
if expected_type == WithoutTypeConstraint then open_constr_no_classes_flags
else open_constr_use_classes_flags in
interp_gen expected_type ist false flags
let interp_pure_open_constr ist =
interp_gen WithoutTypeConstraint ist false pure_open_constr_flags
let interp_typed_pattern ist env sigma (c,_) =
let sigma, c =
interp_gen WithoutTypeConstraint ist true pure_open_constr_flags env sigma c in
pattern_of_constr sigma c
(* Interprets a constr expression casted by the current goal *)
let pf_interp_casted_constr ist gl c =
interp_constr_gen (OfType (pf_concl gl)) ist (pf_env gl) (project gl) c
(* Interprets a constr expression *)
let pf_interp_constr ist gl =
interp_constr ist (pf_env gl) (project gl)
let new_interp_constr ist c k =
let open Proofview in
Proofview.Goal.enter begin fun gl ->
let (sigma, c) = interp_constr ist (Goal.env gl) (Goal.sigma gl) c in
Proofview.tclTHEN (Proofview.V82.tclEVARS sigma) (k c)
end
let interp_constr_in_compound_list inj_fun dest_fun interp_fun ist env sigma l =
let try_expand_ltac_var sigma x =
try match dest_fun x with
| GVar (_,id), _ ->
let v = Id.Map.find id ist.lfun in
sigma, List.map inj_fun (coerce_to_constr_list env v)
| _ ->
raise Not_found
with CannotCoerceTo _ | Not_found ->
(* dest_fun, List.assoc may raise Not_found *)
let sigma, c = interp_fun ist env sigma x in
sigma, [c] in
let sigma, l = List.fold_map try_expand_ltac_var sigma l in
sigma, List.flatten l
let interp_constr_list ist env sigma c =
interp_constr_in_compound_list (fun x -> x) (fun x -> x) interp_constr ist env sigma c
let interp_open_constr_list =
interp_constr_in_compound_list (fun x -> x) (fun x -> x) interp_open_constr
let interp_auto_lemmas ist env sigma lems =
let local_sigma, lems = interp_open_constr_list ist env sigma lems in
List.map (fun lem -> (local_sigma,lem)) lems
(* Interprets a type expression *)
let pf_interp_type ist gl =
interp_type ist (pf_env gl) (project gl)
(* Interprets a reduction expression *)
let interp_unfold ist env (occs,qid) =
(interp_occurrences ist occs,interp_evaluable ist env qid)
let interp_flag ist env red =
{ red with rConst = List.map (interp_evaluable ist env) red.rConst }
let interp_constr_with_occurrences ist sigma env (occs,c) =
let (sigma,c_interp) = interp_constr ist sigma env c in
sigma , (interp_occurrences ist occs, c_interp)
let interp_closed_typed_pattern_with_occurrences ist env sigma (occs, c) =
let _, p = interp_typed_pattern ist env sigma c in
interp_occurrences ist occs, p
let interp_constr_with_occurrences_and_name_as_list =
interp_constr_in_compound_list
(fun c -> ((AllOccurrences,c),Anonymous))
(function ((occs,c),Anonymous) when occs == AllOccurrences -> c
| _ -> raise Not_found)
(fun ist env sigma (occ_c,na) ->
let (sigma,c_interp) = interp_constr_with_occurrences ist env sigma occ_c in
sigma, (c_interp,
interp_fresh_name ist env na))
let interp_red_expr ist sigma env = function
| Unfold l -> sigma , Unfold (List.map (interp_unfold ist env) l)
| Fold l ->
let (sigma,l_interp) = interp_constr_list ist env sigma l in
sigma , Fold l_interp
| Cbv f -> sigma , Cbv (interp_flag ist env f)
| Cbn f -> sigma , Cbn (interp_flag ist env f)
| Lazy f -> sigma , Lazy (interp_flag ist env f)
| Pattern l ->
let (sigma,l_interp) =
Evd.MonadR.List.map_right
(fun c sigma -> interp_constr_with_occurrences ist env sigma c) l sigma
in
sigma , Pattern l_interp
| Simpl o ->
sigma , Simpl (Option.map (interp_closed_typed_pattern_with_occurrences ist env sigma) o)
| CbvVm o ->
sigma , CbvVm (Option.map (interp_closed_typed_pattern_with_occurrences ist env sigma) o)
| CbvNative o ->
sigma , CbvNative (Option.map (interp_closed_typed_pattern_with_occurrences ist env sigma) o)
| (Red _ | Hnf | ExtraRedExpr _ as r) -> sigma , r
let interp_may_eval f ist env sigma = function
| ConstrEval (r,c) ->
let (sigma,redexp) = interp_red_expr ist sigma env r in
let (sigma,c_interp) = f ist env sigma c in
sigma , (fst (Redexpr.reduction_of_red_expr env redexp) env sigma c_interp)
| ConstrContext ((loc,s),c) ->
(try
let (sigma,ic) = f ist env sigma c in
let ctxt = coerce_to_constr_context (Id.Map.find s ist.lfun) in
let evdref = ref sigma in
let c = subst_meta [ConstrMatching.special_meta,ic] ctxt in
let c = Typing.solve_evars env evdref c in
!evdref , c
with
| Not_found ->
user_err_loc (loc, "interp_may_eval",
str "Unbound context identifier" ++ pr_id s ++ str"."))
| ConstrTypeOf c ->
let (sigma,c_interp) = f ist env sigma c in
Typing.e_type_of ~refresh:true env sigma c_interp
| ConstrTerm c ->
try
f ist env sigma c
with reraise ->
let reraise = Errors.push reraise in
(* spiwack: to avoid unnecessary modifications of tacinterp, as this
function already use effect, I call [run] hoping it doesn't mess
up with any assumption. *)
Proofview.NonLogical.run (debugging_exception_step ist false reraise (fun () ->
str"interpretation of term " ++ pr_glob_constr_env env (fst c)));
raise reraise
(* Interprets a constr expression possibly to first evaluate *)
let interp_constr_may_eval ist env sigma c =
let (sigma,csr) =
try
interp_may_eval interp_constr ist env sigma c
with reraise ->
let reraise = Errors.push reraise in
(* spiwack: to avoid unnecessary modifications of tacinterp, as this
function already use effect, I call [run] hoping it doesn't mess
up with any assumption. *)
Proofview.NonLogical.run (debugging_exception_step ist false reraise (fun () -> str"evaluation of term"));
raise reraise
in
begin
(* spiwack: to avoid unnecessary modifications of tacinterp, as this
function already use effect, I call [run] hoping it doesn't mess
up with any assumption. *)
Proofview.NonLogical.run (db_constr (curr_debug ist) env csr);
sigma , csr
end
(** TODO: should use dedicated printers *)
let rec message_of_value v =
let v = Value.normalize v in
let open Tacmach.New in
let open Ftactic in
if has_type v (topwit wit_tacvalue) then
Ftactic.return (str "<tactic>")
else if has_type v (topwit wit_constr) then
let v = out_gen (topwit wit_constr) v in
Ftactic.nf_enter begin fun gl -> Ftactic.return (pr_constr_env (pf_env gl) v) end
else if has_type v (topwit wit_constr_under_binders) then
let c = out_gen (topwit wit_constr_under_binders) v in
Ftactic.nf_enter begin fun gl ->
Ftactic.return (pr_constr_under_binders_env (pf_env gl) c)
end
else if has_type v (topwit wit_unit) then
Ftactic.return (str "()")
else if has_type v (topwit wit_int) then
Ftactic.return (int (out_gen (topwit wit_int) v))
else if has_type v (topwit wit_intro_pattern) then
let p = out_gen (topwit wit_intro_pattern) v in
let print env c = pr_constr_env env (snd (c env Evd.empty)) in
Ftactic.nf_enter begin fun gl ->
Ftactic.return (Miscprint.pr_intro_pattern (fun c -> print (pf_env gl) c) p)
end
else if has_type v (topwit wit_constr_context) then
let c = out_gen (topwit wit_constr_context) v in
Ftactic.nf_enter begin fun gl -> Ftactic.return (pr_constr_env (pf_env gl) c) end
else match Value.to_list v with
| Some l ->
Ftactic.List.map message_of_value l >>= fun l ->
Ftactic.return (prlist_with_sep spc (fun x -> x) l)
| None ->
let tag = pr_argument_type (genarg_tag v) in
Ftactic.return (str "<" ++ tag ++ str ">") (** TODO *)
let interp_message_token ist = function
| MsgString s -> Ftactic.return (str s)
| MsgInt n -> Ftactic.return (int n)
| MsgIdent (loc,id) ->
let v = try Some (Id.Map.find id ist.lfun) with Not_found -> None in
match v with
| None -> Ftactic.lift (Tacticals.New.tclZEROMSG (pr_id id ++ str" not found."))
| Some v -> message_of_value v
let interp_message_nl ist l =
let open Ftactic in
Ftactic.List.map (interp_message_token ist) l >>= function
| [] -> Ftactic.return (mt ())
| l -> Ftactic.return (prlist_with_sep spc (fun x -> x) l ++ fnl ())
let interp_message ist l =
let open Ftactic in
Ftactic.List.map (interp_message_token ist) l >>= fun l ->
Ftactic.return (prlist_with_sep spc (fun x -> x) l)
let rec interp_intro_pattern ist env sigma = function
| loc, IntroAction pat ->
let (sigma,pat) = interp_intro_pattern_action ist env sigma pat in
sigma, (loc, IntroAction pat)
| loc, IntroNaming (IntroIdentifier id) ->
sigma, (loc, interp_intro_pattern_var loc ist env id)
| loc, IntroNaming pat ->
sigma, (loc, IntroNaming (interp_intro_pattern_naming loc ist env pat))
| loc, IntroForthcoming _ as x -> sigma, x
and interp_intro_pattern_naming loc ist env = function
| IntroFresh id -> IntroFresh (interp_fresh_ident ist env id)
| IntroIdentifier id -> interp_intro_pattern_naming_var loc ist env id
| (IntroWildcard | IntroAnonymous) as x -> x
and interp_intro_pattern_action ist env sigma = function
| IntroOrAndPattern l ->
let (sigma,l) = interp_or_and_intro_pattern ist env sigma l in
sigma, IntroOrAndPattern l
| IntroInjection l ->
let sigma,l = interp_intro_pattern_list_as_list ist env sigma l in
sigma, IntroInjection l
| IntroApplyOn (c,ipat) ->
let c = fun env sigma -> interp_constr ist env sigma c in
let sigma,ipat = interp_intro_pattern ist env sigma ipat in
sigma, IntroApplyOn (c,ipat)
| IntroRewrite _ as x -> sigma, x
and interp_or_and_intro_pattern ist env sigma =
List.fold_map (interp_intro_pattern_list_as_list ist env) sigma
and interp_intro_pattern_list_as_list ist env sigma = function
| [loc,IntroNaming (IntroIdentifier id)] as l ->
(try sigma, coerce_to_intro_pattern_list loc env (Id.Map.find id ist.lfun)
with Not_found | CannotCoerceTo _ ->
List.fold_map (interp_intro_pattern ist env) sigma l)
| l -> List.fold_map (interp_intro_pattern ist env) sigma l
let interp_intro_pattern_naming_option ist env = function
| None -> None
| Some (loc,pat) -> Some (loc, interp_intro_pattern_naming loc ist env pat)
let interp_or_and_intro_pattern_option ist env sigma = function
| None -> sigma, None
| Some (loc,l) ->
let sigma, l = match l with
| [[loc',IntroNaming (IntroIdentifier id)]] when (* Hack, see g_tactic.ml4 *) loc' = dloc ->
(match coerce_to_intro_pattern env (Id.Map.find id ist.lfun) with
| IntroAction (IntroOrAndPattern l) -> sigma, l
| _ ->
raise (CannotCoerceTo "a disjunctive/conjunctive introduction pattern"))
| l -> interp_or_and_intro_pattern ist env sigma l in
sigma, Some (loc,l)
let interp_intro_pattern_option ist env sigma = function
| None -> sigma, None
| Some ipat ->
let sigma, ipat = interp_intro_pattern ist env sigma ipat in
sigma, Some ipat
let interp_in_hyp_as ist env sigma (clear,id,ipat) =
let sigma, ipat = interp_intro_pattern_option ist env sigma ipat in
sigma,(clear,interp_hyp ist env id,ipat)
let interp_quantified_hypothesis ist = function
| AnonHyp n -> AnonHyp n
| NamedHyp id ->
try try_interp_ltac_var coerce_to_quantified_hypothesis ist None(dloc,id)
with Not_found -> NamedHyp id
let interp_binding_name ist = function
| AnonHyp n -> AnonHyp n
| NamedHyp id ->
(* If a name is bound, it has to be a quantified hypothesis *)
(* user has to use other names for variables if these ones clash with *)
(* a name intented to be used as a (non-variable) identifier *)
try try_interp_ltac_var coerce_to_quantified_hypothesis ist None(dloc,id)
with Not_found -> NamedHyp id
let interp_declared_or_quantified_hypothesis ist env = function
| AnonHyp n -> AnonHyp n
| NamedHyp id ->
try try_interp_ltac_var
(coerce_to_decl_or_quant_hyp env) ist (Some env) (dloc,id)
with Not_found -> NamedHyp id
let interp_binding ist env sigma (loc,b,c) =
let sigma, c = interp_open_constr ist env sigma c in
sigma, (loc,interp_binding_name ist b,c)
let interp_bindings ist env sigma = function
| NoBindings ->
sigma, NoBindings
| ImplicitBindings l ->
let sigma, l = interp_open_constr_list ist env sigma l in
sigma, ImplicitBindings l
| ExplicitBindings l ->
let sigma, l = List.fold_map (interp_binding ist env) sigma l in
sigma, ExplicitBindings l
let interp_constr_with_bindings ist env sigma (c,bl) =
let sigma, bl = interp_bindings ist env sigma bl in
let sigma, c = interp_open_constr ist env sigma c in
sigma, (c,bl)
let interp_constr_with_bindings_arg ist env sigma (keep,c) =
let sigma, c = interp_constr_with_bindings ist env sigma c in
sigma, (keep,c)
let interp_open_constr_with_bindings ist env sigma (c,bl) =
let sigma, bl = interp_bindings ist env sigma bl in
let sigma, c = interp_open_constr ist env sigma c in
sigma, (c, bl)
let interp_open_constr_with_bindings_arg ist env sigma (keep,c) =
let sigma, c = interp_open_constr_with_bindings ist env sigma c in
sigma,(keep,c)
let loc_of_bindings = function
| NoBindings -> Loc.ghost
| ImplicitBindings l -> loc_of_glob_constr (fst (List.last l))
| ExplicitBindings l -> pi1 (List.last l)
let interp_open_constr_with_bindings_loc ist env sigma ((c,_),bl as cb) =
let loc1 = loc_of_glob_constr c in
let loc2 = loc_of_bindings bl in
let loc = if Loc.is_ghost loc2 then loc1 else Loc.merge loc1 loc2 in
let sigma, cb = interp_open_constr_with_bindings ist env sigma cb in
sigma, (loc,cb)
let interp_open_constr_with_bindings_arg_loc ist env sigma (keep,c) =
let sigma, c = interp_open_constr_with_bindings_loc ist env sigma c in
sigma,(keep,c)
let interp_induction_arg ist gl arg =
let env = pf_env gl and sigma = project gl in
match arg with
| keep,ElimOnConstr c ->
keep,ElimOnConstr (interp_constr_with_bindings ist env sigma c)
| keep,ElimOnAnonHyp n as x -> x
| keep,ElimOnIdent (loc,id) ->
let error () = user_err_loc (loc, "",
strbrk "Cannot coerce " ++ pr_id id ++
strbrk " neither to a quantified hypothesis nor to a term.")
in
let try_cast_id id' =
if Tactics.is_quantified_hypothesis id' gl
then keep,ElimOnIdent (loc,id')
else
(try keep,ElimOnConstr (sigma,(constr_of_id env id',NoBindings))
with Not_found ->
user_err_loc (loc,"",
pr_id id ++ strbrk " binds to " ++ pr_id id' ++ strbrk " which is neither a declared or a quantified hypothesis."))
in
try
(** FIXME: should be moved to taccoerce *)
let v = Id.Map.find id ist.lfun in
let v = Value.normalize v in
if has_type v (topwit wit_intro_pattern) then
let v = out_gen (topwit wit_intro_pattern) v in
match v with
| _, IntroNaming (IntroIdentifier id) -> try_cast_id id
| _ -> error ()
else if has_type v (topwit wit_var) then
let id = out_gen (topwit wit_var) v in
try_cast_id id
else if has_type v (topwit wit_int) then
keep,ElimOnAnonHyp (out_gen (topwit wit_int) v)
else match Value.to_constr v with
| None -> error ()
| Some c -> keep,ElimOnConstr (sigma,(c,NoBindings))
with Not_found ->
(* We were in non strict (interactive) mode *)
if Tactics.is_quantified_hypothesis id gl then
keep,ElimOnIdent (loc,id)
else
let c = (GVar (loc,id),Some (CRef (Ident (loc,id),None))) in
let (sigma,c) = interp_constr ist env sigma c in
keep,ElimOnConstr (sigma,(c,NoBindings))
(* Associates variables with values and gives the remaining variables and
values *)
let head_with_value (lvar,lval) =
let rec head_with_value_rec lacc = function
| ([],[]) -> (lacc,[],[])
| (vr::tvr,ve::tve) ->
(match vr with
| None -> head_with_value_rec lacc (tvr,tve)
| Some v -> head_with_value_rec ((v,ve)::lacc) (tvr,tve))
| (vr,[]) -> (lacc,vr,[])
| ([],ve) -> (lacc,[],ve)
in
head_with_value_rec [] (lvar,lval)
(** [interp_context ctxt] interprets a context (as in
{!Matching.matching_result}) into a context value of Ltac. *)
let interp_context ctxt = in_gen (topwit wit_constr_context) ctxt
(* Reads a pattern by substituting vars of lfun *)
let use_types = false
let eval_pattern lfun ist env sigma (_,pat as c) =
if use_types then
snd (interp_typed_pattern ist env sigma c)
else
instantiate_pattern sigma lfun pat
let read_pattern lfun ist env sigma = function
| Subterm (b,ido,c) -> Subterm (b,ido,eval_pattern lfun ist env sigma c)
| Term c -> Term (eval_pattern lfun ist env sigma c)
(* Reads the hypotheses of a Match Context rule *)
let cons_and_check_name id l =
if Id.List.mem id l then
user_err_loc (dloc,"read_match_goal_hyps",
strbrk ("Hypothesis pattern-matching variable "^(Id.to_string id)^
" used twice in the same pattern."))
else id::l
let rec read_match_goal_hyps lfun ist env sigma lidh = function
| (Hyp ((loc,na) as locna,mp))::tl ->
let lidh' = name_fold cons_and_check_name na lidh in
Hyp (locna,read_pattern lfun ist env sigma mp)::
(read_match_goal_hyps lfun ist env sigma lidh' tl)
| (Def ((loc,na) as locna,mv,mp))::tl ->
let lidh' = name_fold cons_and_check_name na lidh in
Def (locna,read_pattern lfun ist env sigma mv, read_pattern lfun ist env sigma mp)::
(read_match_goal_hyps lfun ist env sigma lidh' tl)
| [] -> []
(* Reads the rules of a Match Context or a Match *)
let rec read_match_rule lfun ist env sigma = function
| (All tc)::tl -> (All tc)::(read_match_rule lfun ist env sigma tl)
| (Pat (rl,mp,tc))::tl ->
Pat (read_match_goal_hyps lfun ist env sigma [] rl, read_pattern lfun ist env sigma mp,tc)
:: read_match_rule lfun ist env sigma tl
| [] -> []
(* misc *)
let mk_constr_value ist gl c =
let (sigma,c_interp) = pf_interp_constr ist gl c in
sigma, Value.of_constr c_interp
let mk_open_constr_value ist gl c =
let (sigma,c_interp) = pf_apply (interp_open_constr ist) gl c in
sigma, Value.of_constr c_interp
let mk_hyp_value ist gl c = Value.of_constr (mkVar (interp_hyp ist gl c))
let mk_int_or_var_value ist c = in_gen (topwit wit_int) (interp_int_or_var ist c)
let pack_sigma (sigma,c) = {it=c;sigma=sigma;}
(* Interprets an l-tac expression into a value *)
let rec val_interp ist (tac:glob_tactic_expr) : typed_generic_argument Ftactic.t =
let value_interp ist = match tac with
| TacFun (it, body) ->
Ftactic.return (of_tacvalue (VFun (extract_trace ist, ist.lfun, it, body)))
| TacLetIn (true,l,u) -> interp_letrec ist l u
| TacLetIn (false,l,u) -> interp_letin ist l u
| TacMatchGoal (lz,lr,lmr) -> interp_match_goal ist lz lr lmr
| TacMatch (lz,c,lmr) -> interp_match ist lz c lmr
| TacArg (loc,a) -> interp_tacarg ist a
| t ->
(** Delayed evaluation *)
Ftactic.return (of_tacvalue (VFun (extract_trace ist, ist.lfun, [], t)))
in
Control.check_for_interrupt ();
match curr_debug ist with
| DebugOn lev ->
let eval v =
let ist = { ist with extra = TacStore.set ist.extra f_debug v } in
value_interp ist
in
Ftactic.debug_prompt lev tac eval
| _ -> value_interp ist
and eval_tactic ist tac : unit Proofview.tactic = match tac with
| TacAtom (loc,t) ->
let call = LtacAtomCall t in
catch_error_tac (push_trace(loc,call) ist) (interp_atomic ist t)
| TacFun _ | TacLetIn _ -> assert false
| TacMatchGoal _ | TacMatch _ -> assert false
| TacId [] ->
(** Optimization *)
Proofview.tclLIFT (db_breakpoint (curr_debug ist) [])
| TacId s ->
let msg = interp_message_nl ist s in
let tac l = Proofview.tclLIFT (Proofview.NonLogical.print (hov 0 l)) in
Proofview.tclTHEN
(Ftactic.run msg tac)
(Proofview.tclLIFT (db_breakpoint (curr_debug ist) s))
| TacFail (n,s) ->
let msg = interp_message ist s in
let tac l = Proofview.V82.tactic (fun gl -> tclFAIL (interp_int_or_var ist n) l gl) in
Ftactic.run msg tac
| TacProgress tac -> Tacticals.New.tclPROGRESS (interp_tactic ist tac)
| TacShowHyps tac ->
Proofview.V82.tactic begin
tclSHOWHYPS (Proofview.V82.of_tactic (interp_tactic ist tac))
end
| TacAbstract (tac,ido) ->
Proofview.Goal.nf_enter begin fun gl -> Tactics.tclABSTRACT
(Option.map (Tacmach.New.of_old (pf_interp_ident ist) gl) ido) (interp_tactic ist tac)
end
| TacThen (t1,t) ->
Tacticals.New.tclTHEN (interp_tactic ist t1) (interp_tactic ist t)
| TacDispatch tl ->
Proofview.tclDISPATCH (List.map (interp_tactic ist) tl)
| TacExtendTac (tf,t,tl) ->
Proofview.tclEXTEND (Array.map_to_list (interp_tactic ist) tf)
(interp_tactic ist t)
(Array.map_to_list (interp_tactic ist) tl)
| TacThens (t1,tl) -> Tacticals.New.tclTHENS (interp_tactic ist t1) (List.map (interp_tactic ist) tl)
| TacThens3parts (t1,tf,t,tl) ->
Tacticals.New.tclTHENS3PARTS (interp_tactic ist t1)
(Array.map (interp_tactic ist) tf) (interp_tactic ist t) (Array.map (interp_tactic ist) tl)
| TacDo (n,tac) -> Tacticals.New.tclDO (interp_int_or_var ist n) (interp_tactic ist tac)
| TacTimeout (n,tac) -> Tacticals.New.tclTIMEOUT (interp_int_or_var ist n) (interp_tactic ist tac)
| TacTime (s,tac) -> Tacticals.New.tclTIME s (interp_tactic ist tac)
| TacTry tac -> Tacticals.New.tclTRY (interp_tactic ist tac)
| TacRepeat tac -> Tacticals.New.tclREPEAT (interp_tactic ist tac)
| TacOr (tac1,tac2) ->
Tacticals.New.tclOR (interp_tactic ist tac1) (interp_tactic ist tac2)
| TacOnce tac ->
Tacticals.New.tclONCE (interp_tactic ist tac)
| TacExactlyOnce tac ->
Tacticals.New.tclEXACTLY_ONCE (interp_tactic ist tac)
| TacOrelse (tac1,tac2) ->
Tacticals.New.tclORELSE (interp_tactic ist tac1) (interp_tactic ist tac2)
| TacFirst l -> Tacticals.New.tclFIRST (List.map (interp_tactic ist) l)
| TacSolve l -> Tacticals.New.tclSOLVE (List.map (interp_tactic ist) l)
| TacComplete tac -> Tacticals.New.tclCOMPLETE (interp_tactic ist tac)
| TacArg a -> interp_tactic ist (TacArg a)
| TacInfo tac ->
msg_warning
(strbrk "The general \"info\" tactic is currently not working." ++ fnl () ++
strbrk "Some specific verbose tactics may exist instead, such as info_trivial, info_auto, info_eauto.");
eval_tactic ist tac
(* For extensions *)
| TacAlias (loc,s,l) ->
let body = Tacenv.interp_alias s in
let rec f x = match genarg_tag x with
| QuantHypArgType | RedExprArgType
| ConstrWithBindingsArgType
| BindingsArgType
| OptArgType _ | PairArgType _ -> (** generic handler *)
Ftactic.nf_enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let env = Proofview.Goal.env gl in
let concl = Proofview.Goal.concl gl in
let goal = Proofview.Goal.goal gl in
let (sigma, arg) = interp_genarg ist env sigma concl goal x in
Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return arg)
end
| _ as tag -> (** Special treatment. TODO: use generic handler *)
Ftactic.nf_enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let env = Proofview.Goal.env gl in
match tag with
| IntOrVarArgType ->
Ftactic.return (mk_int_or_var_value ist (out_gen (glbwit wit_int_or_var) x))
| IdentArgType ->
Ftactic.return (value_of_ident (interp_fresh_ident ist env
(out_gen (glbwit wit_ident) x)))
| VarArgType ->
Ftactic.return (mk_hyp_value ist env (out_gen (glbwit wit_var) x))
| GenArgType -> f (out_gen (glbwit wit_genarg) x)
| ConstrArgType ->
let (sigma,v) =
Tacmach.New.of_old (fun gl -> mk_constr_value ist gl (out_gen (glbwit wit_constr) x)) gl
in
Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return v)
| OpenConstrArgType ->
let (sigma,v) =
Tacmach.New.of_old (fun gl -> mk_open_constr_value ist gl (snd (out_gen (glbwit wit_open_constr) x))) gl in
Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return v)
| ConstrMayEvalArgType ->
let (sigma,c_interp) =
interp_constr_may_eval ist env sigma
(out_gen (glbwit wit_constr_may_eval) x)
in
Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return (Value.of_constr c_interp))
| ListArgType ConstrArgType ->
let wit = glbwit (wit_list wit_constr) in
let (sigma,l_interp) = Tacmach.New.of_old begin fun gl ->
Evd.MonadR.List.map_right
(fun c sigma -> mk_constr_value ist { gl with sigma=sigma } c)
(out_gen wit x)
(project gl)
end gl in
Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return (in_gen (topwit (wit_list wit_genarg)) l_interp))
| ListArgType VarArgType ->
let wit = glbwit (wit_list wit_var) in
Ftactic.return (
let ans = List.map (mk_hyp_value ist env) (out_gen wit x) in
in_gen (topwit (wit_list wit_genarg)) ans
)
| ListArgType IntOrVarArgType ->
let wit = glbwit (wit_list wit_int_or_var) in
let ans = List.map (mk_int_or_var_value ist) (out_gen wit x) in
Ftactic.return (in_gen (topwit (wit_list wit_genarg)) ans)
| ListArgType IdentArgType ->
let wit = glbwit (wit_list wit_ident) in
let mk_ident x = value_of_ident (interp_fresh_ident ist env x) in
let ans = List.map mk_ident (out_gen wit x) in
Ftactic.return (in_gen (topwit (wit_list wit_genarg)) ans)
| ListArgType t ->
let open Ftactic in
let list_unpacker wit l =
let map x =
f (in_gen (glbwit wit) x) >>= fun v ->
Ftactic.return (out_gen (topwit wit) v)
in
Ftactic.List.map map (glb l) >>= fun l ->
Ftactic.return (in_gen (topwit (wit_list wit)) l)
in
list_unpack { list_unpacker } x
| ExtraArgType _ ->
(** Special treatment of tactics *)
if has_type x (glbwit wit_tactic) then
let tac = out_gen (glbwit wit_tactic) x in
val_interp ist tac
else
let goal = Proofview.Goal.goal gl in
let (newsigma,v) = Geninterp.generic_interp ist {Evd.it=goal;sigma} x in
Ftactic.(lift (Proofview.V82.tclEVARS newsigma) <*> return v)
| _ -> assert false
end
in
let (>>=) = Ftactic.bind in
let addvar (x, v) accu =
f v >>= fun v ->
Ftactic.return (Id.Map.add x v accu)
in
let tac = Ftactic.List.fold_right addvar l ist.lfun >>= fun lfun ->
let trace = push_trace (loc,LtacNotationCall s) ist in
let ist = {
lfun = lfun;
extra = TacStore.set ist.extra f_trace trace; } in
val_interp ist body
in
Ftactic.run tac (fun v -> tactic_of_value ist v)
| TacML (loc,opn,l) when List.for_all global_genarg l ->
(* spiwack: a special case for tactics (from TACTIC EXTEND) when
every argument can be interpreted without a
[Proofview.Goal.nf_enter]. *)
let tac = Tacenv.interp_ml_tactic opn in
(* dummy values, will be ignored *)
let env = Environ.empty_env in
let sigma = Evd.empty in
let concl = Term.mkRel (-1) in
let goal = sig_it Goal.V82.dummy_goal in
(* /dummy values *)
let args = List.map (fun a -> snd(interp_genarg ist env sigma concl goal a)) l in
tac args ist
| TacML (loc,opn,l) ->
Proofview.Goal.nf_enter begin fun gl ->
let env = Proofview.Goal.env gl in
let goal_sigma = Proofview.Goal.sigma gl in
let concl = Proofview.Goal.concl gl in
let goal = Proofview.Goal.goal gl in
let tac = Tacenv.interp_ml_tactic opn in
let (sigma,args) =
Evd.MonadR.List.map_right
(fun a sigma -> interp_genarg ist env sigma concl goal a) l goal_sigma
in
Proofview.V82.tclEVARS sigma <*>
tac args ist
end
and force_vrec ist v : typed_generic_argument Ftactic.t =
let v = Value.normalize v in
if has_type v (topwit wit_tacvalue) then
let v = to_tacvalue v in
match v with
| VRec (lfun,body) -> val_interp {ist with lfun = !lfun} body
| v -> Ftactic.return (of_tacvalue v)
else Ftactic.return v
and interp_ltac_reference loc' mustbetac ist r : typed_generic_argument Ftactic.t =
match r with
| ArgVar (loc,id) ->
let v =
try Id.Map.find id ist.lfun
with Not_found -> in_gen (topwit wit_var) id
in
Ftactic.bind (force_vrec ist v) begin fun v ->
let v = propagate_trace ist loc id v in
if mustbetac then Ftactic.return (coerce_to_tactic loc id v) else Ftactic.return v
end
| ArgArg (loc,r) ->
let ids = extract_ids [] ist.lfun in
let loc_info = ((if Loc.is_ghost loc' then loc else loc'),LtacNameCall r) in
let extra = TacStore.set ist.extra f_avoid_ids ids in
let extra = TacStore.set extra f_trace (push_trace loc_info ist) in
let ist = { lfun = Id.Map.empty; extra = extra; } in
val_interp ist (Tacenv.interp_ltac r)
and interp_tacarg ist arg : typed_generic_argument Ftactic.t =
match arg with
| TacGeneric arg ->
Ftactic.nf_enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let goal = Proofview.Goal.goal gl in
let (sigma,v) = Geninterp.generic_interp ist {Evd.it=goal;sigma} arg in
Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return v)
end
| Reference r -> interp_ltac_reference dloc false ist r
| ConstrMayEval c ->
Ftactic.enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let env = Proofview.Goal.env gl in
let (sigma,c_interp) = interp_constr_may_eval ist env sigma c in
Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return (Value.of_constr c_interp))
end
| UConstr c ->
Ftactic.enter begin fun gl ->
let env = Proofview.Goal.env gl in
Ftactic.return (Value.of_uconstr (interp_uconstr ist env c))
end
| MetaIdArg (loc,_,id) -> assert false
| TacCall (loc,r,[]) ->
interp_ltac_reference loc true ist r
| TacCall (loc,f,l) ->
let (>>=) = Ftactic.bind in
interp_ltac_reference loc true ist f >>= fun fv ->
Ftactic.List.map (fun a -> interp_tacarg ist a) l >>= fun largs ->
interp_app loc ist fv largs
| TacFreshId l ->
Ftactic.enter begin fun gl ->
let id = interp_fresh_id ist (Tacmach.New.pf_env gl) l in
Ftactic.return (in_gen (topwit wit_intro_pattern) (dloc, IntroNaming (IntroIdentifier id)))
end
| TacPretype c ->
Ftactic.enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let env = Proofview.Goal.env gl in
let {closure;term} = interp_uconstr ist env c in
let vars = {
Pretyping.ltac_constrs = closure.typed;
Pretyping.ltac_uconstrs = closure.untyped;
Pretyping.ltac_idents = closure.idents;
Pretyping.ltac_genargs = ist.lfun;
} in
let (sigma,c_interp) =
Pretyping.understand_ltac constr_flags sigma env vars WithoutTypeConstraint term
in
Ftactic.(lift (Proofview.V82.tclEVARS sigma) <*> return (Value.of_constr c_interp))
end
| TacNumgoals ->
Ftactic.lift begin
let open Proofview.Notations in
Proofview.numgoals >>= fun i ->
Proofview.tclUNIT (Value.of_int i)
end
| Tacexp t -> val_interp ist t
| TacDynamic(_,t) ->
let tg = (Dyn.tag t) in
if String.equal tg "tactic" then
val_interp ist (tactic_out t ist)
else if String.equal tg "value" then
Ftactic.return (value_out t)
else if String.equal tg "constr" then
Ftactic.return (Value.of_constr (constr_out t))
else
Errors.anomaly ~loc:dloc ~label:"Tacinterp.val_interp"
(str "Unknown dynamic: <" ++ str (Dyn.tag t) ++ str ">")
(* Interprets an application node *)
and interp_app loc ist fv largs : typed_generic_argument Ftactic.t =
let (>>=) = Ftactic.bind in
let fail = Tacticals.New.tclZEROMSG (str "Illegal tactic application.") in
let fv = Value.normalize fv in
if has_type fv (topwit wit_tacvalue) then
match to_tacvalue fv with
(* if var=[] and body has been delayed by val_interp, then body
is not a tactic that expects arguments.
Otherwise Ltac goes into an infinite loop (val_interp puts
a VFun back on body, and then interp_app is called again...) *)
| (VFun(trace,olfun,(_::_ as var),body)
|VFun(trace,olfun,([] as var),
(TacFun _|TacLetIn _|TacMatchGoal _|TacMatch _| TacArg _ as body))) ->
let (extfun,lvar,lval)=head_with_value (var,largs) in
let fold accu (id, v) = Id.Map.add id v accu in
let newlfun = List.fold_left fold olfun extfun in
if List.is_empty lvar then
begin Proofview.tclORELSE
begin
let ist = {
lfun = newlfun;
extra = TacStore.set ist.extra f_trace []; } in
catch_error_tac trace (val_interp ist body)
end
begin fun e ->
Proofview.tclLIFT (debugging_exception_step ist false e (fun () -> str "evaluation")) <*>
Proofview.tclZERO e
end
end >>= fun v ->
(* No errors happened, we propagate the trace *)
let v = append_trace trace v in
Proofview.tclLIFT begin
debugging_step ist
(fun () ->
str"evaluation returns"++fnl()++pr_value None v)
end <*>
if List.is_empty lval then Ftactic.return v else interp_app loc ist v lval
else
Ftactic.return (of_tacvalue (VFun(trace,newlfun,lvar,body)))
| _ -> fail
else fail
(* Gives the tactic corresponding to the tactic value *)
and tactic_of_value ist vle =
let vle = Value.normalize vle in
if has_type vle (topwit wit_tacvalue) then
match to_tacvalue vle with
| VFun (trace,lfun,[],t) ->
let ist = {
lfun = lfun;
extra = TacStore.set ist.extra f_trace []; } in
let tac = eval_tactic ist t in
catch_error_tac trace tac
| (VFun _|VRec _) -> Proofview.tclZERO (UserError ("" , str "A fully applied tactic is expected."))
else if has_type vle (topwit wit_tactic) then
let tac = out_gen (topwit wit_tactic) vle in
eval_tactic ist tac
else Proofview.tclZERO (UserError ("" , str"Expression does not evaluate to a tactic."))
(* Interprets the clauses of a recursive LetIn *)
and interp_letrec ist llc u =
Proofview.tclUNIT () >>= fun () -> (* delay for the effects of [lref], just in case. *)
let lref = ref ist.lfun in
let fold accu ((_, id), b) =
let v = of_tacvalue (VRec (lref, TacArg (dloc, b))) in
Id.Map.add id v accu
in
let lfun = List.fold_left fold ist.lfun llc in
let () = lref := lfun in
let ist = { ist with lfun } in
val_interp ist u
(* Interprets the clauses of a LetIn *)
and interp_letin ist llc u =
let rec fold lfun = function
| [] ->
let ist = { ist with lfun } in
val_interp ist u
| ((_, id), body) :: defs ->
Ftactic.bind (interp_tacarg ist body) (fun v ->
fold (Id.Map.add id v lfun) defs)
in
fold ist.lfun llc
(** [interp_match_success lz ist succ] interprets a single matching success
(of type {!TacticMatching.t}). *)
and interp_match_success ist { TacticMatching.subst ; context ; terms ; lhs } =
let (>>=) = Ftactic.bind in
let lctxt = Id.Map.map interp_context context in
let hyp_subst = Id.Map.map Value.of_constr terms in
let lfun = extend_values_with_bindings subst (lctxt +++ hyp_subst +++ ist.lfun) in
let ist = { ist with lfun } in
val_interp ist lhs >>= fun v ->
if has_type v (topwit wit_tacvalue) then match to_tacvalue v with
| VFun (trace,lfun,[],t) ->
let ist = {
lfun = lfun;
extra = TacStore.set ist.extra f_trace trace; } in
let tac = eval_tactic ist t in
let dummy = VFun (extract_trace ist, Id.Map.empty, [], TacId []) in
catch_error_tac trace (tac <*> Ftactic.return (of_tacvalue dummy))
| _ -> Ftactic.return v
else Ftactic.return v
(** [interp_match_successes lz ist s] interprets the stream of
matching of successes [s]. If [lz] is set to true, then only the
first success is considered, otherwise further successes are tried
if the left-hand side fails. *)
and interp_match_successes lz ist tac =
if lz then
(** Only keep the first matching result, we don't backtrack on it *)
let tac = Proofview.tclONCE tac in
tac >>= fun ans -> interp_match_success ist ans
else
let decrease e = match e with
| FailError (0, _) -> e
| FailError (n, s) -> FailError (pred n, s)
| _ -> e
in
let break e = match e with
| FailError (0, _) -> false
| FailError (n, s) -> true
| _ -> false
in
let tac = Proofview.tclBREAK break tac >>= fun ans -> interp_match_success ist ans in
(** Once a tactic has succeeded, do not backtrack anymore *)
Proofview.tclONCE (Proofview.tclOR tac (fun e -> Proofview.tclZERO (decrease e)))
(* Interprets the Match expressions *)
and interp_match ist lz constr lmr =
let (>>=) = Ftactic.bind in
begin Proofview.tclORELSE
(interp_ltac_constr ist constr)
begin function
| e ->
Proofview.tclLIFT (debugging_exception_step ist true e
(fun () -> str "evaluation of the matched expression")) <*>
Proofview.tclZERO e
end
end >>= fun constr ->
Ftactic.enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let env = Proofview.Goal.env gl in
let ilr = read_match_rule (extract_ltac_constr_values ist env) ist env sigma lmr in
interp_match_successes lz ist (TacticMatching.match_term env sigma constr ilr)
end
(* Interprets the Match Context expressions *)
and interp_match_goal ist lz lr lmr =
Ftactic.nf_enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let env = Proofview.Goal.env gl in
let hyps = Proofview.Goal.hyps gl in
let hyps = if lr then List.rev hyps else hyps in
let concl = Proofview.Goal.concl gl in
let ilr = read_match_rule (extract_ltac_constr_values ist env) ist env sigma lmr in
interp_match_successes lz ist (TacticMatching.match_goal env sigma hyps concl ilr)
end
(* Interprets extended tactic generic arguments *)
(* spiwack: interp_genarg has an argument [concl] for the case of
"casted open constr". And [gl] for [Geninterp]. I haven't changed
the interface for geninterp yet as it is used by ARGUMENT EXTEND
(in turn used by plugins). At the time I'm writing this comment
though, the only concerned plugins are the declarative mode (which
needs the [extra] field of goals to interprete rules) and ssreflect
(a handful of time). I believe we'd need to address "casted open
constr" and the declarative mode rules to provide a reasonable
interface. *)
and interp_genarg ist env sigma concl gl x =
let evdref = ref sigma in
let rec interp_genarg x =
match genarg_tag x with
| IntOrVarArgType ->
in_gen (topwit wit_int_or_var)
(ArgArg (interp_int_or_var ist (out_gen (glbwit wit_int_or_var) x)))
| IdentArgType ->
in_gen (topwit wit_ident)
(interp_fresh_ident ist env (out_gen (glbwit wit_ident) x))
| VarArgType ->
in_gen (topwit wit_var) (interp_hyp ist env (out_gen (glbwit wit_var) x))
| GenArgType ->
in_gen (topwit wit_genarg) (interp_genarg (out_gen (glbwit wit_genarg) x))
| ConstrArgType ->
let (sigma,c_interp) =
interp_constr ist env !evdref (out_gen (glbwit wit_constr) x)
in
evdref := sigma;
in_gen (topwit wit_constr) c_interp
| ConstrMayEvalArgType ->
let (sigma,c_interp) = interp_constr_may_eval ist env !evdref (out_gen (glbwit wit_constr_may_eval) x) in
evdref := sigma;
in_gen (topwit wit_constr_may_eval) c_interp
| QuantHypArgType ->
in_gen (topwit wit_quant_hyp)
(interp_declared_or_quantified_hypothesis ist env
(out_gen (glbwit wit_quant_hyp) x))
| RedExprArgType ->
let (sigma,r_interp) =
interp_red_expr ist !evdref env (out_gen (glbwit wit_red_expr) x)
in
evdref := sigma;
in_gen (topwit wit_red_expr) r_interp
| OpenConstrArgType ->
let expected_type = WithoutTypeConstraint in
in_gen (topwit wit_open_constr)
(interp_open_constr ~expected_type
ist env !evdref
(snd (out_gen (glbwit wit_open_constr) x)))
| ConstrWithBindingsArgType ->
in_gen (topwit wit_constr_with_bindings)
(pack_sigma (interp_constr_with_bindings ist env !evdref
(out_gen (glbwit wit_constr_with_bindings) x)))
| BindingsArgType ->
in_gen (topwit wit_bindings)
(pack_sigma (interp_bindings ist env !evdref (out_gen (glbwit wit_bindings) x)))
| ListArgType ConstrArgType ->
let (sigma,v) = interp_genarg_constr_list ist env !evdref x in
evdref := sigma;
v
| ListArgType VarArgType -> interp_genarg_var_list ist env x
| ListArgType _ ->
let list_unpacker wit l =
let map x =
out_gen (topwit wit) (interp_genarg (in_gen (glbwit wit) x))
in
in_gen (topwit (wit_list wit)) (List.map map (glb l))
in
list_unpack { list_unpacker } x
| OptArgType _ ->
let opt_unpacker wit o = match glb o with
| None -> in_gen (topwit (wit_opt wit)) None
| Some x ->
let x = out_gen (topwit wit) (interp_genarg (in_gen (glbwit wit) x)) in
in_gen (topwit (wit_opt wit)) (Some x)
in
opt_unpack { opt_unpacker } x
| PairArgType _ ->
let pair_unpacker wit1 wit2 o =
let (p, q) = glb o in
let p = out_gen (topwit wit1) (interp_genarg (in_gen (glbwit wit1) p)) in
let q = out_gen (topwit wit2) (interp_genarg (in_gen (glbwit wit2) q)) in
in_gen (topwit (wit_pair wit1 wit2)) (p, q)
in
pair_unpack { pair_unpacker } x
| ExtraArgType s ->
let (sigma,v) = Geninterp.generic_interp ist { Evd.it=gl;sigma=(!evdref) } x in
evdref:=sigma;
v
in
let v = interp_genarg x in
!evdref , v
(** returns [true] for genargs which have the same meaning
independently of goals. *)
and global_genarg =
let rec global_tag = function
| IntOrVarArgType | GenArgType -> true
| ListArgType t | OptArgType t -> global_tag t
| PairArgType (t1,t2) -> global_tag t1 && global_tag t2
| _ -> false
in
fun x -> global_tag (genarg_tag x)
and interp_genarg_constr_list ist env sigma x =
let lc = out_gen (glbwit (wit_list wit_constr)) x in
let (sigma,lc) = interp_constr_list ist env sigma lc in
sigma , in_gen (topwit (wit_list wit_constr)) lc
and interp_genarg_var_list ist env x =
let lc = out_gen (glbwit (wit_list wit_var)) x in
let lc = interp_hyp_list ist env lc in
in_gen (topwit (wit_list wit_var)) lc
(* Interprets tactic expressions : returns a "constr" *)
and interp_ltac_constr ist e : constr Ftactic.t =
let (>>=) = Ftactic.bind in
begin Proofview.tclORELSE
(val_interp ist e)
begin function
| Not_found ->
Ftactic.enter begin fun gl ->
let env = Proofview.Goal.env gl in
Proofview.tclLIFT begin
debugging_step ist (fun () ->
str "evaluation failed for" ++ fnl() ++
Pptactic.pr_glob_tactic env e)
end
<*> Proofview.tclZERO Not_found
end
| e -> Proofview.tclZERO e
end
end >>= fun result ->
Ftactic.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let result = Value.normalize result in
try
let cresult = coerce_to_closed_constr env result in
Proofview.tclLIFT begin
debugging_step ist (fun () ->
Pptactic.pr_glob_tactic env e ++ fnl() ++
str " has value " ++ fnl() ++
pr_constr_env env cresult)
end <*>
Ftactic.return cresult
with CannotCoerceTo _ ->
let env = Proofview.Goal.env gl in
Proofview.tclZERO (UserError ( "",
errorlabstrm ""
(str "Must evaluate to a closed term" ++ fnl() ++
str "offending expression: " ++ fnl() ++ pr_inspect env e result)))
end
(* Interprets tactic expressions : returns a "tactic" *)
and interp_tactic ist tac : unit Proofview.tactic =
Ftactic.run (val_interp ist tac) (fun v -> tactic_of_value ist v)
(* Interprets a primitive tactic *)
and interp_atomic ist tac : unit Proofview.tactic =
match tac with
(* Basic tactics *)
| TacIntroPattern l ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let sigma,l' = interp_intro_pattern_list_as_list ist env sigma l in
Proofview.V82.tclEVARS sigma <*> Tactics.intros_patterns l'
end
| TacIntroMove (ido,hto) ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let mloc = interp_move_location ist env hto in
Tactics.intro_move (Option.map (interp_fresh_ident ist env) ido) mloc
end
| TacExact c ->
Proofview.V82.tactic begin fun gl ->
let (sigma,c_interp) = pf_interp_casted_constr ist gl c in
tclTHEN
(tclEVARS sigma)
(Tactics.exact_no_check c_interp)
gl
end
| TacApply (a,ev,cb,cl) ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let sigma, l =
List.fold_map (interp_open_constr_with_bindings_arg_loc ist env) sigma cb
in
let sigma,tac = match cl with
| None -> sigma, fun l -> Tactics.apply_with_bindings_gen a ev l
| Some cl ->
let sigma,(clear,id,cl) = interp_in_hyp_as ist env sigma cl in
sigma, fun l -> Tactics.apply_in a ev clear id l cl in
Tacticals.New.tclWITHHOLES ev tac sigma l
end
| TacElim (ev,(keep,cb),cbo) ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let sigma, cb = interp_constr_with_bindings ist env sigma cb in
let sigma, cbo = Option.fold_map (interp_constr_with_bindings ist env) sigma cbo in
Tacticals.New.tclWITHHOLES ev (Tactics.elim ev keep cb) sigma cbo
end
| TacCase (ev,(keep,cb)) ->
Proofview.Goal.enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let env = Proofview.Goal.env gl in
let sigma, cb = interp_constr_with_bindings ist env sigma cb in
Tacticals.New.tclWITHHOLES ev (Tactics.general_case_analysis ev keep) sigma cb
end
| TacFix (idopt,n) ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
Proofview.V82.tactic (Tactics.fix (Option.map (interp_fresh_ident ist env) idopt) n)
end
| TacMutualFix (id,n,l) ->
Proofview.V82.tactic begin fun gl ->
let env = pf_env gl in
let f sigma (id,n,c) =
let (sigma,c_interp) = pf_interp_type ist { gl with sigma=sigma } c in
sigma , (interp_fresh_ident ist env id,n,c_interp) in
let (sigma,l_interp) =
Evd.MonadR.List.map_right (fun c sigma -> f sigma c) l (project gl)
in
tclTHEN
(tclEVARS sigma)
(Tactics.mutual_fix (interp_fresh_ident ist env id) n l_interp 0)
gl
end
| TacCofix idopt ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
Proofview.V82.tactic (Tactics.cofix (Option.map (interp_fresh_ident ist env) idopt))
end
| TacMutualCofix (id,l) ->
Proofview.V82.tactic begin fun gl ->
let env = pf_env gl in
let f sigma (id,c) =
let (sigma,c_interp) = pf_interp_type ist { gl with sigma=sigma } c in
sigma , (interp_fresh_ident ist env id,c_interp) in
let (sigma,l_interp) =
Evd.MonadR.List.map_right (fun c sigma -> f sigma c) l (project gl)
in
tclTHEN
(tclEVARS sigma)
(Tactics.mutual_cofix (interp_fresh_ident ist env id) l_interp 0)
gl
end
| TacAssert (b,t,ipat,c) ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let (sigma,c) =
(if Option.is_empty t then interp_constr else interp_type) ist env sigma c
in
let sigma, ipat = interp_intro_pattern_option ist env sigma ipat in
let tac = Option.map (interp_tactic ist) t in
Proofview.V82.tclEVARS sigma <*> Tactics.forward b tac ipat c
end
| TacGeneralize cl ->
let tac arg = Proofview.V82.tactic (Tactics.Simple.generalize_gen arg) in
Proofview.Goal.enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let env = Proofview.Goal.env gl in
let sigma, cl = interp_constr_with_occurrences_and_name_as_list ist env sigma cl in
Proofview.V82.tclEVARS sigma <*> tac cl
end
| TacGeneralizeDep c ->
(new_interp_constr ist c)
(fun c -> Proofview.V82.tactic (Tactics.generalize_dep c))
| TacLetTac (na,c,clp,b,eqpat) ->
Proofview.V82.nf_evar_goals <*>
Proofview.Goal.nf_enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let clp = interp_clause ist env clp in
let eqpat = interp_intro_pattern_naming_option ist env eqpat in
if Locusops.is_nowhere clp then
(* We try to fully-typecheck the term *)
let (sigma,c_interp) =
Tacmach.New.of_old (fun gl -> pf_interp_constr ist gl c) gl
in
let let_tac b na c cl eqpat =
let id = Option.default (Loc.ghost,IntroAnonymous) eqpat in
let with_eq = if b then None else Some (true,id) in
Tactics.letin_tac with_eq na c None cl
in
Proofview.V82.tclEVARS sigma <*>
let_tac b (interp_fresh_name ist env na) c_interp clp eqpat
else
(* We try to keep the pattern structure as much as possible *)
let let_pat_tac b na c cl eqpat =
let id = Option.default (Loc.ghost,IntroAnonymous) eqpat in
let with_eq = if b then None else Some (true,id) in
Tactics.letin_pat_tac with_eq na c cl
in
let_pat_tac b (interp_fresh_name ist env na)
(interp_pure_open_constr ist env sigma c) clp eqpat
end
(* Automation tactics *)
| TacTrivial (debug,lems,l) ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
Auto.h_trivial ~debug
(interp_auto_lemmas ist env sigma lems)
(Option.map (List.map (interp_hint_base ist)) l)
end
| TacAuto (debug,n,lems,l) ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
Auto.h_auto ~debug (Option.map (interp_int_or_var ist) n)
(interp_auto_lemmas ist env sigma lems)
(Option.map (List.map (interp_hint_base ist)) l)
end
(* Derived basic tactics *)
| TacInductionDestruct (isrec,ev,(l,el,cls)) ->
(* spiwack: some unknown part of destruct needs the goal to be
prenormalised. *)
Proofview.V82.nf_evar_goals <*>
Proofview.Goal.nf_enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let sigma,l =
List.fold_map begin fun sigma (c,(ipato,ipats)) ->
(* TODO: move sigma as a side-effect *)
let c = Tacmach.New.of_old (fun gl -> interp_induction_arg ist gl c) gl in
let ipato = interp_intro_pattern_naming_option ist env ipato in
let sigma,ipats = interp_or_and_intro_pattern_option ist env sigma ipats in
sigma,(c,(ipato,ipats))
end sigma l
in
let sigma,el =
Option.fold_map (interp_constr_with_bindings ist env) sigma el in
let interp_clause = interp_clause ist env in
let cls = Option.map interp_clause cls in
Tacticals.New.tclWITHHOLES ev (Tactics.induction_destruct isrec ev) sigma (l,el,cls)
end
| TacDoubleInduction (h1,h2) ->
let h1 = interp_quantified_hypothesis ist h1 in
let h2 = interp_quantified_hypothesis ist h2 in
Elim.h_double_induction h1 h2
(* Context management *)
| TacClear (b,l) ->
Proofview.V82.tactic begin fun gl ->
let l = interp_hyp_list ist (pf_env gl) l in
if b then Tactics.keep l gl else Tactics.clear l gl
end
| TacClearBody l ->
Proofview.Goal.enter begin fun gl ->
Tactics.clear_body (interp_hyp_list ist (Tacmach.New.pf_env gl) l)
end
| TacMove (dep,id1,id2) ->
Proofview.V82.tactic begin fun gl ->
Tactics.move_hyp dep (interp_hyp ist (pf_env gl) id1)
(interp_move_location ist (pf_env gl) id2)
gl
end
| TacRename l ->
Proofview.V82.tactic begin fun gl ->
let env = pf_env gl in
Tactics.rename_hyp (List.map (fun (id1,id2) ->
interp_hyp ist env id1,
interp_fresh_ident ist env (snd id2)) l)
gl
end
(* Constructors *)
| TacSplit (ev,bll) ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let sigma, bll = List.fold_map (interp_bindings ist env) sigma bll in
Tacticals.New.tclWITHHOLES ev (Tactics.split_with_bindings ev) sigma bll
end
(* Conversion *)
| TacReduce (r,cl) ->
Proofview.V82.tactic begin fun gl ->
let (sigma,r_interp) = interp_red_expr ist (project gl) (pf_env gl) r in
tclTHEN
(tclEVARS sigma)
(Tactics.reduce r_interp (interp_clause ist (pf_env gl) cl))
gl
end
| TacChange (None,c,cl) ->
Proofview.V82.nf_evar_goals <*>
Proofview.V82.tactic begin fun gl ->
let is_onhyps = match cl.onhyps with
| None | Some [] -> true
| _ -> false
in
let is_onconcl = match cl.concl_occs with
| AllOccurrences | NoOccurrences -> true
| _ -> false
in
let c_interp env sigma =
if is_onhyps && is_onconcl
then interp_type ist env sigma c
else interp_constr ist env sigma c
in
(Tactics.change None c_interp (interp_clause ist (pf_env gl) cl))
gl
end
| TacChange (Some op,c,cl) ->
Proofview.V82.nf_evar_goals <*>
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
Proofview.V82.tactic begin fun gl ->
let sign,op = interp_typed_pattern ist env sigma op in
let to_catch = function Not_found -> true | e -> Errors.is_anomaly e in
let c_interp env sigma =
let env' = Environ.push_named_context sign env in
try interp_constr ist env' sigma c
with e when to_catch e (* Hack *) ->
errorlabstrm "" (strbrk "Failed to get enough information from the left-hand side to type the right-hand side.")
in
(Tactics.change (Some op) c_interp (interp_clause ist env cl))
gl
end
end
(* Equivalence relations *)
| TacSymmetry c ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let cl = interp_clause ist env c in
Tactics.intros_symmetry cl
end
(* Equality and inversion *)
| TacRewrite (ev,l,cl,by) ->
Proofview.Goal.enter begin fun gl ->
let l = List.map (fun (b,m,(keep,c)) ->
let f env sigma = interp_open_constr_with_bindings ist env sigma c in
(b,m,keep,f)) l in
let env = Proofview.Goal.env gl in
let cl = interp_clause ist env cl in
Equality.general_multi_rewrite ev l cl
(Option.map (fun by -> Tacticals.New.tclCOMPLETE (interp_tactic ist by),
Equality.Naive)
by)
end
| TacInversion (DepInversion (k,c,ids),hyp) ->
Proofview.Goal.nf_enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let (sigma,c_interp) =
match c with
| None -> sigma , None
| Some c ->
let (sigma,c_interp) =
Tacmach.New.of_old (fun gl -> pf_interp_constr ist gl c) gl
in
sigma , Some c_interp
in
let dqhyps = interp_declared_or_quantified_hypothesis ist env hyp in
let sigma,ids = interp_or_and_intro_pattern_option ist env sigma ids in
Proofview.V82.tclEVARS sigma <*> Inv.dinv k c_interp ids dqhyps
end
| TacInversion (NonDepInversion (k,idl,ids),hyp) ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let hyps = interp_hyp_list ist env idl in
let dqhyps = interp_declared_or_quantified_hypothesis ist env hyp in
let sigma, ids = interp_or_and_intro_pattern_option ist env sigma ids in
Proofview.V82.tclEVARS sigma <*> Inv.inv_clause k ids hyps dqhyps
end
| TacInversion (InversionUsing (c,idl),hyp) ->
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let sigma = Proofview.Goal.sigma gl in
let (sigma,c_interp) = interp_constr ist env sigma c in
let dqhyps = interp_declared_or_quantified_hypothesis ist env hyp in
let hyps = interp_hyp_list ist env idl in
Proofview.V82.tclEVARS sigma <*>
Leminv.lemInv_clause dqhyps
c_interp
hyps
end
(* Initial call for interpretation *)
let default_ist () =
let extra = TacStore.set TacStore.empty f_debug (get_debug ()) in
{ lfun = Id.Map.empty; extra = extra }
let eval_tactic t =
Proofview.tclUNIT () >>= fun () -> (* delay for [default_ist] *)
Proofview.tclLIFT db_initialize <*>
interp_tactic (default_ist ()) t
let eval_tactic_ist ist t =
Proofview.tclLIFT db_initialize <*>
interp_tactic ist t
(* globalization + interpretation *)
let interp_tac_gen lfun avoid_ids debug t =
Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let extra = TacStore.set TacStore.empty f_debug debug in
let extra = TacStore.set extra f_avoid_ids avoid_ids in
let ist = { lfun = lfun; extra = extra } in
let ltacvars = Id.Map.domain lfun in
interp_tactic ist
(intern_pure_tactic {
ltacvars; ltacrecvars = Id.Map.empty;
genv = env } t)
end
let interp t = interp_tac_gen Id.Map.empty [] (get_debug()) t
let _ = Proof_global.set_interp_tac interp
(* Used to hide interpretation for pretty-print, now just launch tactics *)
(* [global] means that [t] should be internalized outside of goals. *)
let hide_interp global t ot =
let hide_interp env =
let ist = { ltacvars = Id.Set.empty; ltacrecvars = Id.Map.empty;
genv = env } in
let te = intern_pure_tactic ist t in
let t = eval_tactic te in
match ot with
| None -> t
| Some t' -> Tacticals.New.tclTHEN t t'
in
if global then
Proofview.tclENV >>= fun env ->
hide_interp env
else
Proofview.Goal.enter begin fun gl ->
hide_interp (Proofview.Goal.env gl)
end
(***************************************************************************)
(** Register standard arguments *)
let def_intern ist x = (ist, x)
let def_subst _ x = x
let def_interp ist gl x = (project gl, x)
let declare_uniform t =
Genintern.register_intern0 t def_intern;
Genintern.register_subst0 t def_subst;
Geninterp.register_interp0 t def_interp
let () =
declare_uniform wit_unit
let () =
declare_uniform wit_int
let () =
declare_uniform wit_bool
let () =
declare_uniform wit_string
let () =
declare_uniform wit_pre_ident
let () =
let interp ist gl ref = (project gl, interp_reference ist (pf_env gl) ref) in
Geninterp.register_interp0 wit_ref interp;
let interp ist gl pat = interp_intro_pattern ist (pf_env gl) (project gl) pat in
Geninterp.register_interp0 wit_intro_pattern interp;
let interp ist gl pat = (project gl, interp_clause ist (pf_env gl) pat) in
Geninterp.register_interp0 wit_clause_dft_concl interp;
let interp ist gl s = interp_sort (project gl) s in
Geninterp.register_interp0 wit_sort interp
let () =
let interp ist gl tac =
let f = VFun (extract_trace ist, ist.lfun, [], tac) in
(project gl, TacArg (dloc, valueIn (of_tacvalue f)))
in
Geninterp.register_interp0 wit_tactic interp
let () =
Geninterp.register_interp0 wit_uconstr (fun ist gl c ->
project gl , interp_uconstr ist (pf_env gl) c
)
(***************************************************************************)
(* Other entry points *)
let val_interp ist tac k = Ftactic.run (val_interp ist tac) k
let interp_ltac_constr ist c k = Ftactic.run (interp_ltac_constr ist c) k
let interp_redexp env sigma r =
let ist = default_ist () in
let gist = { fully_empty_glob_sign with genv = env; } in
interp_red_expr ist sigma env (intern_red_expr gist r)
(***************************************************************************)
(* Embed tactics in raw or glob tactic expr *)
let globTacticIn t = TacArg (dloc,TacDynamic (dloc,tactic_in t))
let tacticIn t =
globTacticIn (fun ist ->
try glob_tactic (t ist)
with e when Errors.noncritical e -> anomaly ~label:"tacticIn"
(str "Incorrect tactic expression. Received exception is:" ++
Errors.print e))
(***************************************************************************)
(* Backwarding recursive needs of tactic glob/interp/eval functions *)
let _ =
let eval ty env sigma lfun arg =
let ist = { lfun = lfun; extra = TacStore.empty; } in
if has_type arg (glbwit wit_tactic) then
let tac = out_gen (glbwit wit_tactic) arg in
let tac = interp_tactic ist tac in
let prf = Proof.start sigma [env, ty] in
let (prf, _) =
try Proof.run_tactic env tac prf
with Proofview_monad.TacticFailure e as src ->
(** Catch the inner error of the monad tactic *)
let src = Errors.push src in
let e = Backtrace.app_backtrace ~src ~dst:e in
raise e
in
let sigma = Proof.in_proof prf (fun sigma -> sigma) in
let ans = match Proof.initial_goals prf with
| [c, _] -> c
| _ -> assert false
in
ans, sigma
else
failwith "not a tactic"
in
Hook.set Pretyping.genarg_interp_hook eval
let _ = Hook.set Auto.extern_interp
(fun l ->
let lfun = Id.Map.map (fun c -> Value.of_constr c) l in
let ist = { (default_ist ()) with lfun; } in
interp_tactic ist)
(** Used in tactic extension **)
let dummy_id = Id.of_string "_"
let lift_constr_tac_to_ml_tac vars tac =
let tac _ ist = Proofview.Goal.enter begin fun gl ->
let env = Proofview.Goal.env gl in
let map = function
| None -> None
| Some id ->
let c = Id.Map.find id ist.lfun in
try Some (coerce_to_closed_constr env c)
with CannotCoerceTo ty ->
error_ltac_variable Loc.ghost dummy_id (Some env) c ty
in
let args = List.map_filter map vars in
tac args ist
end in
tac
|