aboutsummaryrefslogtreecommitdiffhomepage
path: root/tactics/tacinterp.ml
blob: 27eb73d0a1b3882cdfa97d833013c797dd6f9fb8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(* $Id$ *)

open Astterm
open Closure
open RedFlags
open Declarations
open Entries
open Dyn
open Libobject
open Pattern
open Pp
open Rawterm
open Sign
open Tacred
open Util
open Names
open Nameops
open Libnames
open Nametab
open Pfedit
open Proof_type
open Refiner
open Tacmach
open Tactic_debug
open Coqast
open Ast
open Term
open Termops
open Declare
open Tacexpr
open Safe_typing
open Typing
open Hiddentac
open Genarg

let err_msg_tactic_not_found macro_loc macro =
  user_err_loc
    (macro_loc,"macro_expand",
     (str "Tactic macro " ++ str macro ++ spc () ++ str "not found"))

let error_syntactic_metavariables_not_allowed loc =
  user_err_loc 
    (loc,"out_ident",
     str "Syntactic metavariables allowed only in quotations")

let skip_metaid = function
  | AI x -> x
  | MetaId (loc,_) -> error_syntactic_metavariables_not_allowed loc

(* Values for interpretation *)
type value =
  | VClosure of interp_sign * raw_tactic_expr
  | VTactic of tactic  (* For mixed ML/Ltac tactics (e.g. Tauto) *)
  | VFTactic of value list * (value list->tactic)
  | VRTactic of (goal list sigma * validation)
  | VContext of interp_sign * direction_flag
      * (pattern_ast,raw_tactic_expr) match_rule list
  | VFun of (identifier * value) list * identifier option list *raw_tactic_expr
  | VVoid
  | VInteger of int
  | VIdentifier of identifier (* idents which are not refs, as in "Intro H" *)
  | VConstr of constr
  | VConstr_context of constr
  | VRec of value ref

(* Signature for interpretation: val_interp and interpretation functions *)
and interp_sign =
  { evc : Evd.evar_map;
    env : Environ.env;
    lfun : (identifier * value) list;
    lmatch : (int * constr) list;
    goalopt : goal sigma option;
    debug : debug_info }

(* For tactic_of_value *)
exception NotTactic

(* Gives the constr corresponding to a Constr tactic_arg *)
let constr_of_VConstr = function
  | VConstr c -> c
  | _ -> anomalylabstrm "constr_of_VConstr" (str "Not a Constr tactic_arg")

(* Gives the constr corresponding to a Constr_context tactic_arg *)
let constr_of_VConstr_context = function
  | VConstr_context c -> c
  | _ ->
    anomalylabstrm "constr_of_VConstr_context" (str
      "Not a Constr_context tactic_arg")

(*
(* Gives identifiers and makes the possible injection constr -> ident *)
let make_ids ast = function
  | Identifier id -> id
  | Constr c ->
    (try destVar c with
    | Invalid_argument "destVar" ->
      anomalylabstrm "make_ids"
      (str "This term cannot be reduced to an identifier" ++ fnl () ++
        print_ast ast))
  | _ -> anomalylabstrm "make_ids" (str "Not an identifier")
*)

let pr_value env = function
  | VVoid -> str "()"
  | VInteger n -> int n
  | VIdentifier id -> pr_id id
  | VConstr c -> Printer.prterm_env env c
  | VConstr_context c -> Printer.prterm_env env c
  | (VClosure _ | VTactic _ | VFTactic _ | VRTactic _ |
     VContext _ | VFun _ | VRec _) -> str "<fun>"

(* Transforms a named_context into a (string * constr) list *)
let make_hyps = List.map (fun (id,_,typ) -> (id,body_of_type typ))

(* Transforms an id into a constr if possible *)
let constr_of_id ist id =
  match ist.goalopt with
  | None -> construct_reference (Some (Environ.named_context ist.env)) id
  | Some goal ->
    let hyps = pf_hyps goal in
    if mem_named_context id hyps then
      mkVar id
    else
      let csr = global_qualified_reference (make_short_qualid id) in
      (match kind_of_term csr with
      | Var _ -> raise Not_found
      | _ -> csr)

(* To embed several objects in Coqast.t *)
let ((tactic_in : (interp_sign -> raw_tactic_expr) -> Dyn.t),
     (tactic_out : Dyn.t -> (interp_sign -> raw_tactic_expr))) =
  create "tactic"

let ((value_in : value -> Dyn.t),
     (value_out : Dyn.t -> value)) = create "value"

let tacticIn t = TacArg (TacDynamic (dummy_loc,tactic_in t))
let tacticOut = function
  | TacArg (TacDynamic (_,d)) ->
    if (tag d) = "tactic" then
      tactic_out d
    else
      anomalylabstrm "tacticOut" (str "Dynamic tag should be tactic")
  | ast ->
    anomalylabstrm "tacticOut"
      (str "Not a Dynamic ast: " (* ++ print_ast ast*) )

let valueIn t = TacDynamic (dummy_loc,value_in t)
let valueOut = function
  | TacDynamic (_,d) ->
    if (tag d) = "value" then
      value_out d
    else
      anomalylabstrm "valueOut" (str "Dynamic tag should be value")
  | ast ->
    anomalylabstrm "valueOut"
      (str "Not a Dynamic ast: " (* ++ print_ast ast*) )

let constrIn c = constrIn c
let constrOut = constrOut

let loc = dummy_loc

(* Table of interpretation functions *)
let interp_tab =
  (Hashtbl.create 17 : (string , interp_sign -> Coqast.t -> value) Hashtbl.t)

(* Adds an interpretation function *)
let interp_add (ast_typ,interp_fun) =
  try
    Hashtbl.add interp_tab ast_typ interp_fun
  with
      Failure _ ->
        errorlabstrm "interp_add"
          (str "Cannot add the interpretation function for " ++ str ast_typ ++            str " twice")

(* Adds a possible existing interpretation function *)
let overwriting_interp_add (ast_typ,interp_fun) =
  if Hashtbl.mem interp_tab ast_typ then
  begin
    Hashtbl.remove interp_tab ast_typ;
    warning ("Overwriting definition of tactic interpreter command " ^ ast_typ)
  end;
  Hashtbl.add interp_tab ast_typ interp_fun

(* Finds the interpretation function corresponding to a given ast type *)
let look_for_interp = Hashtbl.find interp_tab

(* Globalizes the identifier *)

let find_reference ist qid =
  (* We first look for a variable of the current proof *)
  match repr_qualid qid, ist.goalopt with
    | (d,id),Some gl when repr_dirpath d = [] & List.mem id (pf_ids_of_hyps gl)
	-> VarRef id
    | _ -> Nametab.locate qid

let coerce_to_reference ist = function
  | VConstr c ->
      (try reference_of_constr c
      with Not_found -> invalid_arg_loc (loc, "Not a reference"))
(*  | VIdentifier id -> VarRef id*)
  | v -> errorlabstrm "coerce_to_reference"
      (str "The value" ++ spc () ++ pr_value ist.env v ++ 
       str "cannot be coerced to a reference")

(* turns a value into an evaluable reference *)
let error_not_evaluable s =
  errorlabstrm "evalref_of_ref" 
    (str "Cannot coerce" ++ spc ()  ++ s ++ spc () ++
     str "to an evaluable reference")

let coerce_to_evaluable_ref env c =
  let ev = match c with
    | VConstr c when isConst c -> EvalConstRef (destConst c)
    | VConstr c when isVar c -> EvalVarRef (destVar c)
(*    | VIdentifier id -> EvalVarRef id*)
    | _ -> error_not_evaluable (pr_value env c)
  in
  if not (Tacred.is_evaluable env ev) then
    error_not_evaluable (pr_value env c);
  ev

let coerce_to_inductive = function
  | VConstr c when isInd c -> destInd c
  | x ->
      try
	let r = match x with
	  | VConstr c -> reference_of_constr c
	  | _ -> failwith "" in
	errorlabstrm "coerce_to_inductive"
          (Printer.pr_global r ++ str " is not an inductive type")
      with _ ->
	errorlabstrm "coerce_to_inductive"
          (str "Found an argument which should be an inductive type")

(* Summary and Object declaration *)
let mactab = ref Gmap.empty

let lookup qid = Gmap.find (locate_tactic qid) !mactab

let _ =
  let init () = mactab := Gmap.empty in
  let freeze () = !mactab in
  let unfreeze fs = mactab := fs in
  Summary.declare_summary "tactic-definition"
    { Summary.freeze_function   = freeze;
      Summary.unfreeze_function = unfreeze;
      Summary.init_function     = init;
      Summary.survive_section   = false }

(* Interpretation of extra generic arguments *)
type genarg_interp_type =
    interp_sign -> raw_generic_argument -> closed_generic_argument
let extragenargtab = ref (Gmap.empty : (string,genarg_interp_type) Gmap.t)
let add_genarg_interp id f = extragenargtab := Gmap.add id f !extragenargtab
let lookup_genarg_interp id = 
  try Gmap.find id !extragenargtab
  with Not_found -> failwith ("No interpretation function found for entry "^id)


(* Unboxes VRec *)
let unrec = function
  | VRec v -> !v
  | a -> a

(************* GLOBALIZE ************)

(* We have identifier <| global_reference <| constr *)

(* Globalize a name which can be fresh *)
let glob_ident l ist x =
  (* We use identifier both for variables and new names; thus nothing to do *)
  if List.mem x (fst ist) then () else l:=x::!l;
  x

let glob_name l ist = function
  | Anonymous -> Anonymous
  | Name id -> Name (glob_ident l ist id)

(* Globalize a name which must be bound -- actually just check it is bound *)
let glob_hyp (lfun,_) (loc,id) =
  if List.mem id lfun then id
  else
(*
    try let _ = lookup (make_short_qualid id) in id
    with Not_found -> 
*)
    Pretype_errors.error_var_not_found_loc loc id

let glob_lochyp ist (loc,_ as locid) = (loc,glob_hyp ist locid)

let error_unbound_metanum loc n =
  user_err_loc
    (loc,"glob_qualid_or_metanum", str "?" ++ int n ++ str " is unbound")

let glob_metanum ist loc n =
  if List.mem n (snd ist) then n else error_unbound_metanum loc n

let glob_hyp_or_metanum ist = function
  | AN (loc,id) -> AN (loc,glob_hyp ist (loc,id))
  | MetaNum (loc,n) -> MetaNum (loc,glob_metanum ist loc n)

let glob_qualid_or_metanum ist = function
  | AN (loc,qid) -> AN (loc,qualid_of_sp (sp_of_global None (Nametab.global (loc,qid))))
  | MetaNum (loc,n) -> MetaNum (loc,glob_metanum ist loc n)

let glob_reference ist (_,qid as locqid) =
  let dir, id = repr_qualid qid in
  try 
    if dir = empty_dirpath && List.mem id (fst ist) then qid
    else raise Not_found
  with Not_found ->
    qualid_of_sp (sp_of_global None (Nametab.global locqid))

let glob_ltac_qualid ist (loc,qid as locqid) =
  try qualid_of_sp (locate_tactic qid)
  with Not_found -> glob_reference ist locqid

let glob_ltac_reference ist = function
  | RIdent (loc,id) -> 
      if List.mem id (fst ist) then RIdent (loc,id)
      else RQualid (loc,glob_ltac_qualid ist (loc,make_short_qualid id))
  | RQualid qid -> RQualid (loc,glob_ltac_qualid ist qid)

let rec glob_intro_pattern lf ist = function
  | IntroOrAndPattern l ->
      IntroOrAndPattern (List.map (List.map (glob_intro_pattern lf ist)) l)
  | IntroWildcard ->
      IntroWildcard
  | IntroIdentifier id ->
      IntroIdentifier (glob_ident lf ist id)

let glob_quantified_hypothesis ist x =
  (* We use identifier both for variables and quantified hyps (no way to
     statically check the existence of a quantified hyp); thus nothing to do *)
  x

let glob_constr ist c =
  let _ = Astterm.interp_rawconstr_gen Evd.empty (Global.env()) [] false (fst ist) c in
  c

(* Globalize bindings *)
let glob_binding ist (b,c) =
  (glob_quantified_hypothesis ist b,glob_constr ist c)

let glob_bindings ist = function
  | NoBindings -> NoBindings
  | ImplicitBindings l -> ImplicitBindings (List.map (glob_constr ist) l)
  | ExplicitBindings l -> ExplicitBindings (List.map (glob_binding ist) l)

let glob_constr_with_bindings ist (c,bl) =
  (glob_constr ist c, glob_bindings ist bl)

let glob_clause_pattern ist (l,occl) =
  let rec check = function
    | (hyp,l) :: rest -> 
	let (loc,_ as id) = skip_metaid hyp in
	(AI(loc,glob_hyp ist id),l)::(check rest)
    | [] -> []
  in (l,check occl)

let glob_induction_arg ist = function
  | ElimOnConstr c -> ElimOnConstr (glob_constr ist c)
  | ElimOnAnonHyp n as x -> x
  | ElimOnIdent (loc,id) as x -> x

(* Globalize a reduction expression *)
let glob_evaluable_or_metanum ist = function
  | AN (loc,qid) -> AN (loc,glob_reference ist (loc,qid))
  | MetaNum (loc,n) -> MetaNum (loc,glob_metanum ist loc n)

let glob_unfold ist (l,qid) = (l,glob_evaluable_or_metanum ist qid)

let glob_flag ist red =
  { red with rConst = List.map (glob_evaluable_or_metanum ist) red.rConst }

let glob_pattern ist (l,c) = (l,glob_constr ist c)

let glob_redexp ist = function
  | Unfold l -> Unfold (List.map (glob_unfold ist) l)
  | Fold l -> Fold (List.map (glob_constr ist) l)
  | Cbv f -> Cbv (glob_flag ist f)
  | Lazy f -> Lazy (glob_flag ist f)
  | Pattern l -> Pattern (List.map (glob_pattern ist) l)
  | (Red _ | Simpl | Hnf as r) -> r
  | ExtraRedExpr (s,c) -> ExtraRedExpr (s, glob_constr ist c)

(* Interprets an hypothesis name *)
let glob_hyp_location ist = function
  | InHyp id ->
      let (loc,_ as id) = skip_metaid id in
      InHyp (AI(loc,glob_hyp ist id))
  | InHypType id -> 
      let (loc,_ as id) = skip_metaid id in
      InHypType (AI(loc,glob_hyp ist id))

(* Reads a pattern *)
let glob_pattern evc env lfun = function
  | Subterm (ido,pc) ->
      let lfun = List.map (fun id -> (id, mkVar id)) lfun in
      let (metas,_) = interp_constrpattern_gen evc env lfun pc  in
      metas, Subterm (ido,pc)
  | Term pc ->
      let lfun = List.map (fun id -> (id, mkVar id)) lfun in
      let (metas,_) = interp_constrpattern_gen evc env lfun pc  in
      metas, Term pc

let glob_constr_may_eval ist = function
  | ConstrEval (r,c) -> ConstrEval (glob_redexp ist r,glob_constr ist c)
  | ConstrContext (locid,c) ->
      ConstrContext ((loc,glob_hyp ist locid),glob_constr ist c)
  | ConstrTypeOf c -> ConstrTypeOf (glob_constr ist c)
  | ConstrTerm c -> ConstrTerm (glob_constr ist c)

(* Reads the hypotheses of a Match Context rule *)
let rec glob_match_context_hyps evc env lfun = function
  | (NoHypId mp)::tl ->
      let metas1, pat = glob_pattern evc env lfun mp in
      let lfun, metas2, hyps = glob_match_context_hyps evc env lfun tl in
      lfun, metas1@metas2, (NoHypId pat)::hyps
  | (Hyp ((_,s) as locs,mp))::tl ->
      let metas1, pat = glob_pattern evc env lfun mp in
      let lfun, metas2, hyps = glob_match_context_hyps evc env lfun tl in
      s::lfun, metas1@metas2, Hyp (locs,pat)::hyps
  | [] -> lfun, [], []

(* Utilities *)
let rec filter_some = function
  | None :: l -> filter_some l
  | Some a :: l -> a :: filter_some l
  | [] -> []

let extract_names lrc =
  List.fold_right 
    (fun ((loc,name),_) l ->
      if List.mem name l then
	user_err_loc
	  (loc, "glob_tactic", str "This variable is bound several times");
      name::l)
    lrc []

let extract_let_names lrc =
  List.fold_right 
    (fun ((loc,name),_,_) l ->
      if List.mem name l then
	user_err_loc
	  (loc, "glob_tactic", str "This variable is bound several times");
      name::l)
    lrc []

(* Globalizes tactics *)
let rec glob_atomic lf ist = function
  (* Basic tactics *)
  | TacIntroPattern l -> TacIntroPattern (List.map (glob_intro_pattern lf ist) l)
  | TacIntrosUntil hyp -> TacIntrosUntil (glob_quantified_hypothesis ist hyp)
  | TacIntroMove (ido,ido') ->
      TacIntroMove (option_app (glob_ident lf ist) ido,
          option_app (fun (loc,_ as x) -> (loc,glob_hyp ist x)) ido')
  | TacAssumption -> TacAssumption
  | TacExact c -> TacExact (glob_constr ist c)
  | TacApply cb -> TacApply (glob_constr_with_bindings ist cb)
  | TacElim (cb,cbo) ->
      TacElim (glob_constr_with_bindings ist cb,
               option_app (glob_constr_with_bindings ist) cbo)
  | TacElimType c -> TacElimType (glob_constr ist c)
  | TacCase cb -> TacCase (glob_constr_with_bindings ist cb)
  | TacCaseType c -> TacCaseType (glob_constr ist c)
  | TacFix (idopt,n) -> TacFix (option_app (glob_ident lf ist) idopt,n)
  | TacMutualFix (id,n,l) ->
      let f (id,n,c) = (glob_ident lf ist id,n,glob_constr ist c) in
      TacMutualFix (glob_ident lf ist id, n, List.map f l)
  | TacCofix idopt -> TacCofix (option_app (glob_ident lf ist) idopt)
  | TacMutualCofix (id,l) ->
      let f (id,c) = (glob_ident lf ist id,glob_constr ist c) in
      TacMutualCofix (glob_ident lf ist id, List.map f l)
  | TacCut c -> TacCut (glob_constr ist c)
  | TacTrueCut (ido,c) ->
      TacTrueCut (option_app (glob_ident lf ist) ido, glob_constr ist c)
  | TacForward (b,na,c) -> TacForward (b,glob_name lf ist na,glob_constr ist c)
  | TacGeneralize cl -> TacGeneralize (List.map (glob_constr ist) cl)
  | TacGeneralizeDep c -> TacGeneralizeDep (glob_constr ist c)
  | TacLetTac (id,c,clp) ->
      TacLetTac (id,glob_constr ist c,glob_clause_pattern ist clp)
  | TacInstantiate (n,c) -> TacInstantiate (n,glob_constr ist c)

  (* Automation tactics *)
  | TacTrivial l -> TacTrivial l
  | TacAuto (n,l) -> TacAuto (n,l)
  | TacAutoTDB n -> TacAutoTDB n
  | TacDestructHyp (b,(loc,_ as id)) -> TacDestructHyp(b,(loc,glob_hyp ist id))
  | TacDestructConcl -> TacDestructConcl
  | TacSuperAuto (n,l,b1,b2) -> TacSuperAuto (n,l,b1,b2)
  | TacDAuto (n,p) -> TacDAuto (n,p)

  (* Derived basic tactics *)
  | TacOldInduction h -> TacOldInduction (glob_quantified_hypothesis ist h)
  | TacNewInduction c -> TacNewInduction (glob_induction_arg ist c)
  | TacOldDestruct h -> TacOldDestruct (glob_quantified_hypothesis ist h)
  | TacNewDestruct c -> TacNewDestruct (glob_induction_arg ist c)
  | TacDoubleInduction (h1,h2) ->
      let h1 = glob_quantified_hypothesis ist h1 in
      let h2 = glob_quantified_hypothesis ist h2 in
      TacDoubleInduction (h1,h2)
  | TacDecomposeAnd c -> TacDecomposeAnd (glob_constr ist c)
  | TacDecomposeOr c -> TacDecomposeOr (glob_constr ist c)
  | TacDecompose (l,c) ->
      let l = List.map (glob_qualid_or_metanum ist) l in
      TacDecompose (l,glob_constr ist c)
  | TacSpecialize (n,l) -> TacSpecialize (n,glob_constr_with_bindings ist l)
  | TacLApply c -> TacLApply (glob_constr ist c)

  (* Context management *)
  | TacClear l -> TacClear (List.map (glob_hyp_or_metanum ist) l)
  | TacClearBody l -> TacClearBody (List.map (glob_hyp_or_metanum ist) l)
  | TacMove (dep,id1,id2) -> TacMove (dep,glob_lochyp ist id1,glob_lochyp ist id2)
  | TacRename (id1,id2) -> TacRename (glob_lochyp ist id1, glob_lochyp ist id2)

  (* Constructors *)
  | TacLeft bl -> TacLeft (glob_bindings ist bl)
  | TacRight bl -> TacRight (glob_bindings ist bl)
  | TacSplit bl -> TacSplit (glob_bindings ist bl)
  | TacAnyConstructor t -> TacAnyConstructor (option_app (glob_tactic ist) t)
  | TacConstructor (n,bl) -> TacConstructor (n, glob_bindings ist bl)

  (* Conversion *)
  | TacReduce (r,cl) ->
      TacReduce (glob_redexp ist r, List.map (glob_hyp_location ist) cl)
  | TacChange (c,cl) ->
      TacChange (glob_constr ist c, List.map (glob_hyp_location ist) cl)

  (* Equivalence relations *)
  | TacReflexivity -> TacReflexivity
  | TacSymmetry -> TacSymmetry
  | TacTransitivity c -> TacTransitivity (glob_constr ist c)

  (* For extensions *)
  | TacExtend (opn,l) ->
      let _ = lookup_tactic opn in
      TacExtend (opn,List.map (glob_genarg ist) l)
  | TacAlias (_,l,body) -> failwith "TODO"

and glob_tactic ist tac = snd (glob_tactic_seq ist tac)

and glob_tactic_seq (lfun,lmeta as ist) = function
  | TacAtom (loc,t) ->
      let lf = ref lfun in
      let t = glob_atomic lf ist t in
      !lf, TacAtom (loc, t)
  | TacFun tacfun -> lfun, TacFun (glob_tactic_fun ist tacfun)
  | TacFunRec (name,tacfun) ->
      lfun, TacFunRec (name,glob_tactic_fun ((snd name)::lfun,lmeta) tacfun)
  | TacLetRecIn (lrc,u) ->
      let names = extract_names lrc in
      let ist = (names@lfun,lmeta) in
      let lrc = List.map (fun (n,b) -> (n,glob_tactic_fun ist b)) lrc in
      lfun, TacLetRecIn (lrc,glob_tactic ist u)
  | TacLetIn (l,u) ->
      let l = List.map (fun (n,c,b) -> (n,option_app (glob_constr_may_eval ist) c,glob_tacarg ist b)) l in
      let ist' = ((extract_let_names l)@lfun,lmeta) in
      lfun, TacLetIn (l,glob_tactic ist' u)
  | TacLetCut l ->
      let f (n,c,t) = (n,glob_constr_may_eval ist c,glob_tacarg ist t) in
      lfun, TacLetCut (List.map f l)
  | TacMatchContext (lr,lmr) ->
      lfun, TacMatchContext(lr, glob_match_rule ist lmr)
  | TacMatch (c,lmr) ->
      lfun, TacMatch (glob_constr_may_eval ist c,glob_match_rule ist lmr)
  | TacId -> lfun, TacId
  | TacFail n as x -> lfun, x
  | TacProgress tac -> lfun, TacProgress (glob_tactic ist tac)
  | TacAbstract (tac,s) -> lfun, TacAbstract (glob_tactic ist tac,s)
  | TacThen (t1,t2) ->
      let lfun', t1 = glob_tactic_seq ist t1 in
      let lfun'', t2 = glob_tactic_seq (lfun',lmeta) t2 in
      lfun'', TacThen (t1,t2)
  | TacThens (t,tl) ->
      let lfun', t = glob_tactic_seq ist t in
      (* Que faire en cas de (tac complexe avec Match et Thens; tac2) ?? *)
      lfun', TacThens (t, List.map (glob_tactic (lfun',lmeta)) tl)
  | TacDo (n,tac) -> lfun, TacDo (n,glob_tactic ist tac)
  | TacTry tac -> lfun, TacTry (glob_tactic ist tac)
  | TacInfo tac -> lfun, TacInfo (glob_tactic ist tac)
  | TacRepeat tac -> lfun, TacRepeat (glob_tactic ist tac)
  | TacOrelse (tac1,tac2) ->
      lfun, TacOrelse (glob_tactic ist tac1,glob_tactic ist tac2)
  | TacFirst l -> lfun, TacFirst (List.map (glob_tactic ist) l)
  | TacSolve l -> lfun, TacSolve (List.map (glob_tactic ist) l)
  | TacArg a -> lfun, TacArg (glob_tacarg ist a)

and glob_tactic_fun (lfun,lmeta) (var,body) = 
  let lfun' = List.rev_append (filter_some var) lfun in
  (var,glob_tactic (lfun',lmeta) body)

and glob_tacarg ist = function
  | TacVoid -> TacVoid
  | Reference r -> Reference (glob_ltac_reference ist r)
  | Integer n -> Integer n
  | ConstrMayEval c -> ConstrMayEval (glob_constr_may_eval ist c)
  | MetaNumArg (loc,n) -> MetaNumArg (loc,glob_metanum ist loc n)
  | MetaIdArg (loc,_) -> error_syntactic_metavariables_not_allowed loc
  | TacCall (loc,f,l) ->
      TacCall (loc,glob_tacarg ist f,List.map (glob_tacarg ist) l)
  | Tacexp t -> Tacexp (glob_tactic ist t)
  | TacDynamic(_,t) as x ->
      (match tag t with
	| "tactic"|"value"|"constr" -> x
	| s -> anomaly_loc (loc, "Tacinterp.val_interp",
                 str "Unknown dynamic: <" ++ str s ++ str ">"))

(* Reads the rules of a Match Context or a Match *)
and glob_match_rule (lfun,lmeta as ist) = function
  | (All tc)::tl ->
      (All (glob_tactic ist tc))::(glob_match_rule ist tl)
  | (Pat (rl,mp,tc))::tl ->
      let env = Global.env() in
      let lfun',metas1,hyps = glob_match_context_hyps Evd.empty env lfun rl in
      let metas2,pat = glob_pattern Evd.empty env lfun mp in
      let metas = list_uniquize (metas1@metas2@lmeta) in
      (Pat (hyps,pat,glob_tactic (lfun',metas) tc))::(glob_match_rule ist tl)
  | [] -> []

and glob_genarg ist x =
  match genarg_tag x with
  | BoolArgType -> in_gen rawwit_bool (out_gen rawwit_bool x)
  | IntArgType -> in_gen rawwit_int (out_gen rawwit_int x)
  | IntOrVarArgType ->
      let f = function
	| ArgVar (loc,id) -> ArgVar (loc,glob_hyp ist (loc,id))
	| ArgArg n as x -> x in
      in_gen rawwit_int_or_var (f (out_gen rawwit_int_or_var x))
  | StringArgType ->
      in_gen rawwit_string (out_gen rawwit_string x)
  | PreIdentArgType ->
      in_gen rawwit_pre_ident (out_gen rawwit_pre_ident x)
  | IdentArgType ->
      in_gen rawwit_ident (glob_hyp ist (dummy_loc,out_gen rawwit_ident x))
  | QualidArgType ->
      let (loc,qid) = out_gen rawwit_qualid x in
      in_gen rawwit_qualid (loc,glob_ltac_qualid ist (loc,qid))
  | ConstrArgType ->
      in_gen rawwit_constr (glob_constr ist (out_gen rawwit_constr x))
  | ConstrMayEvalArgType ->
      in_gen rawwit_constr_may_eval (glob_constr_may_eval ist (out_gen rawwit_constr_may_eval x))
  | QuantHypArgType ->
      in_gen rawwit_quant_hyp
        (glob_quantified_hypothesis ist (out_gen rawwit_quant_hyp x))
  | RedExprArgType ->
      in_gen rawwit_red_expr (glob_redexp ist (out_gen rawwit_red_expr x))
  | TacticArgType ->
      in_gen rawwit_tactic (glob_tactic ist (out_gen rawwit_tactic x))
  | CastedOpenConstrArgType ->
      in_gen rawwit_casted_open_constr 
        (glob_constr ist (out_gen rawwit_casted_open_constr x))
  | ConstrWithBindingsArgType ->
      in_gen rawwit_constr_with_bindings
        (glob_constr_with_bindings ist (out_gen rawwit_constr_with_bindings x))
  | List0ArgType _ -> app_list0 (glob_genarg ist) x
  | List1ArgType _ -> app_list1 (glob_genarg ist) x
  | OptArgType _ -> app_opt (glob_genarg ist) x
  | PairArgType _ -> app_pair (glob_genarg ist) (glob_genarg ist) x
  | ExtraArgType s -> x


(************* END GLOBALIZE ************)

(* Reads the head of Fun *)
let read_fun ast =
  let rec read_fun_rec = function
    | Node(_,"VOID",[])::tl -> None::(read_fun_rec tl)
    | Nvar(_,s)::tl -> (Some s)::(read_fun_rec tl)
    | [] -> []
    | _ ->
      anomalylabstrm "Tacinterp.read_fun_rec" (str "Fun not well formed")
  in
    match ast with
      | Node(_,"FUNVAR",l) -> read_fun_rec l
      | _ ->
        anomalylabstrm "Tacinterp.read_fun" (str "Fun not well formed")

(* Reads the clauses of a Rec *)
let rec read_rec_clauses = function
  | [] -> []
  | Node(_,"RECCLAUSE",[Nvar(_,name);it;body])::tl ->
    (name,it,body)::(read_rec_clauses tl)
  |_ ->
    anomalylabstrm "Tacinterp.read_rec_clauses"
      (str "Rec not well formed")

(* Associates variables with values and gives the remaining variables and
   values *)
let head_with_value (lvar,lval) =
  let rec head_with_value_rec lacc = function
    | ([],[]) -> (lacc,[],[])
    | (vr::tvr,ve::tve) ->
      (match vr with
      |	None -> head_with_value_rec lacc (tvr,tve)
      | Some v -> head_with_value_rec ((v,ve)::lacc) (tvr,tve))
    | (vr,[]) -> (lacc,vr,[])
    | ([],ve) -> (lacc,[],ve)
  in
    head_with_value_rec [] (lvar,lval)

(* Gives a context couple if there is a context identifier *)
let give_context ctxt = function
  | None -> []
  | Some id -> [id,VConstr_context ctxt]

(* Reads a pattern *)
let read_pattern evc env lfun = function
  | Subterm (ido,pc) ->
      Subterm (ido,snd (interp_constrpattern_gen evc env lfun pc))
  | Term pc ->
      Term (snd (interp_constrpattern_gen evc env lfun pc))

(* Reads the hypotheses of a Match Context rule *)
let rec read_match_context_hyps evc env lfun lidh = function
  | (NoHypId mp)::tl ->
    (NoHypId (read_pattern evc env lfun mp))::
      (read_match_context_hyps evc env lfun lidh tl)
  | (Hyp ((loc,id) as locid,mp))::tl ->
    if List.mem id lidh then
      user_err_loc (loc,"Tacinterp.read_match_context_hyps",
      str ("Hypothesis pattern-matching variable "^(string_of_id id)^
           " used twice in the same pattern"))
    else
    (Hyp (locid,read_pattern evc env lfun mp))::
      (read_match_context_hyps evc env lfun (id::lidh) tl)
  | [] -> []

(* Reads the rules of a Match Context or a Match *)
let rec read_match_rule evc env lfun = function
  | (All tc)::tl -> (All tc)::(read_match_rule evc env lfun tl)
  | (Pat (rl,mp,tc))::tl ->
      (Pat (read_match_context_hyps evc env lfun [] rl,
            read_pattern evc env lfun mp,tc))
       ::(read_match_rule evc env lfun tl)
  | [] -> []

(* For Match Context and Match *)
exception No_match
exception Not_coherent_metas

let is_match_catchable = function
  | No_match | FailError _ -> true
  | e -> Logic.catchable_exception e

(* Verifies if the matched list is coherent with respect to lcm *)
let rec verify_metas_coherence ist lcm = function
  | (num,csr)::tl ->
    if (List.for_all
         (fun (a,b) ->
            if a=num then
              Reductionops.is_conv ist.env ist.evc b csr
            else
              true) lcm) then
      (num,csr)::(verify_metas_coherence ist lcm tl)
    else
      raise Not_coherent_metas
  | [] -> []

(* Tries to match a pattern and a constr *)
let apply_matching pat csr =
  try
    (Pattern.matches pat csr)
  with
     PatternMatchingFailure -> raise No_match

(* Tries to match one hypothesis pattern with a list of hypotheses *)
let apply_one_mhyp_context ist lmatch mhyp lhyps noccopt =
  let get_pattern = function
    | Hyp (_,pat) -> pat
    | NoHypId pat -> pat
  and get_id_couple id = function
    | Hyp((_,idpat),_) -> [idpat,VIdentifier id]
    | NoHypId _ -> [] in
  let rec apply_one_mhyp_context_rec mhyp lhyps_acc nocc = function
    | (id,hyp)::tl ->
      (match (get_pattern mhyp) with
      | Term t ->
        (try
          let lmeta = 
            verify_metas_coherence ist lmatch (Pattern.matches t hyp) in
          (get_id_couple id mhyp,[],lmeta,tl,(id,hyp),None)
         with | PatternMatchingFailure | Not_coherent_metas ->
          apply_one_mhyp_context_rec mhyp (lhyps_acc@[id,hyp]) 0 tl)
      | Subterm (ic,t) ->
        (try
          let (lm,ctxt) = sub_match nocc t hyp in
          let lmeta = verify_metas_coherence ist lmatch lm in
          (get_id_couple id mhyp,give_context ctxt
            ic,lmeta,tl,(id,hyp),Some nocc)
         with
        | NextOccurrence _ ->
          apply_one_mhyp_context_rec mhyp (lhyps_acc@[id,hyp]) 0 tl
        | Not_coherent_metas ->
          apply_one_mhyp_context_rec mhyp lhyps_acc (nocc + 1) ((id,hyp)::tl)))
    | [] -> raise No_match in
  let nocc =
    match noccopt with
    | None -> 0
    | Some n -> n in
  apply_one_mhyp_context_rec mhyp [] nocc lhyps

(*
let coerce_to_qualid loc = function
  | Constr c when isVar c -> make_short_qualid (destVar c)
  | Constr c -> 
      (try qualid_of_sp (sp_of_global (Global.env()) (reference_of_constr c))
      with Not_found -> invalid_arg_loc (loc, "Not a reference"))
  | Identifier id -> make_short_qualid id
  | Qualid qid -> qid
  | _ -> invalid_arg_loc (loc, "Not a reference")
*)

let constr_to_id loc c =
  if isVar c then destVar c
  else invalid_arg_loc (loc, "Not an identifier")

let constr_to_qid loc c =
  try qualid_of_sp (sp_of_global None (reference_of_constr c))
  with _ -> invalid_arg_loc (loc, "Not a global reference")

(* Check for LetTac *)
let check_clause_pattern ist (l,occl) =
  match ist.goalopt with
  | Some gl ->
      let sign = pf_hyps gl in
      let rec check acc = function
	| (hyp,l) :: rest ->
	    let _,hyp = skip_metaid hyp in
	    if List.mem hyp acc then
	      error ("Hypothesis "^(string_of_id hyp)^" occurs twice");
	    if not (mem_named_context hyp sign) then
	      error ("No such hypothesis: " ^ (string_of_id hyp));
	    (hyp,l)::(check (hyp::acc) rest)
	| [] -> []
      in (l,check [] occl)
  | None -> error "No goal"

(* Debug reference *)
let debug = ref DebugOff

(* Sets the debugger mode *)
let set_debug pos = debug := pos

(* Gives the state of debug *)
let get_debug () = !debug

(* Interprets an identifier *)
let eval_ident ist id =
  try (unrec (List.assoc id ist.lfun))
  with | Not_found ->
(*
    try (vcontext_interp ist (lookup (make_short_qualid id)))
    with | Not_found -> 
*)
VIdentifier id

(* Gives the identifier corresponding to an Identifier tactic_arg *)
let id_of_Identifier = function
  | VConstr c when isVar c -> destVar c
  | VIdentifier id -> id
  | _ ->
    anomalylabstrm "id_of_Identifier" (str "Not an IDENTIFIER tactic_arg")

let coerce_to_hypothesis ist = function
  | VConstr c when isVar c -> destVar c
  | VIdentifier id -> id
  | v -> errorlabstrm "coerce_to_hypothesis"
      (str "Cannot coerce" ++ spc () ++ pr_value ist.env v ++ spc () ++
       str "to an existing hypothesis")

let ident_interp ist id =
  id_of_Identifier (eval_ident ist id)

let hyp_interp ist (loc,id) =
  coerce_to_hypothesis ist (eval_ident ist id)

let name_interp ist = function
  | Anonymous -> Anonymous
  | Name id -> Name (ident_interp ist id)

let hyp_or_metanum_interp ist = function
  | AN (loc,id) -> ident_interp ist id
  | MetaNum (loc,n) -> constr_to_id loc (List.assoc n ist.lmatch)

(* To avoid to move to much simple functions in the big recursive block *)
let forward_vcontext_interp = ref (fun ist v -> failwith "not implemented")

let interp_pure_qualid ist (loc,qid) =
  try VConstr (constr_of_reference (find_reference ist qid))
  with Not_found ->
    let (dir,id) = repr_qualid qid in
    if dir = empty_dirpath then VIdentifier id
    else user_err_loc (loc,"interp_pure_qualid",str "Unknown reference")

let interp_ltac_qualid ist (loc,qid as lqid) =
  try (!forward_vcontext_interp ist (lookup qid))
  with Not_found -> interp_pure_qualid ist lqid

let interp_ltac_reference ist = function
  | RIdent (loc,id) -> 
      (try unrec (List.assoc id ist.lfun)
      with | Not_found -> interp_ltac_qualid ist (loc,make_short_qualid id))
  | RQualid qid -> interp_ltac_qualid ist qid

(* Interprets a qualified name *)
let eval_qualid ist (loc,qid as locqid) =
  let dir, id = repr_qualid qid in
  try 
    if dir = empty_dirpath then unrec (List.assoc id ist.lfun) 
    else raise Not_found
  with | Not_found ->
    interp_pure_qualid ist locqid

let qualid_interp ist qid =
  let v = eval_qualid ist qid in
  coerce_to_reference ist v

(* Interprets a qualified name. This can be a metavariable to be injected *)
let qualid_or_metanum_interp ist = function
  | AN (loc,qid) -> qid
  | MetaNum (loc,n) -> constr_to_qid loc (List.assoc n ist.lmatch)

let eval_ref_or_metanum ist = function
  | AN (loc,qid) -> eval_qualid ist (loc,qid)
  | MetaNum (loc,n) -> VConstr (List.assoc n ist.lmatch)

let interp_evaluable_or_metanum ist c =
  let c = eval_ref_or_metanum ist c in
  coerce_to_evaluable_ref ist.env c

let interp_inductive_or_metanum ist c =
  let c = eval_ref_or_metanum ist c in
  coerce_to_inductive c

(* Interprets an hypothesis name *)
let interp_hyp_location ist = function
  | InHyp id -> InHyp (hyp_interp ist (skip_metaid id))
  | InHypType id -> InHypType (hyp_interp ist (skip_metaid id))

let id_opt_interp ist = option_app (ident_interp ist)

(* Interpretation of constructions *)

  (* Extracted the constr list from lfun *)
let rec constr_list_aux ist = function
  | (id,VConstr c)::tl -> (id,c)::(constr_list_aux ist tl)
  | (id0,VIdentifier id)::tl ->
    (try (id0,(constr_of_id ist id))::(constr_list_aux ist tl)
     with | Not_found -> (constr_list_aux ist tl))
  | _::tl -> constr_list_aux ist tl
  | [] -> []

let constr_list ist = constr_list_aux ist ist.lfun
let interp_constr ocl ist c =
  interp_constr_gen ist.evc ist.env (constr_list ist) ist.lmatch c ocl

let interp_openconstr ist c ocl =
  interp_openconstr_gen ist.evc ist.env (constr_list ist) ist.lmatch c ocl

(* Interprets a constr expression *)
let constr_interp ist c =
  let csr = interp_constr None ist c in
  begin
    db_constr ist.debug ist.env csr;
    csr
  end

(* Interprets a constr expression casted by the current goal *)
let cast_constr_interp ist c =
  match ist.goalopt with
  | Some gl ->
      let csr = interp_constr (Some (pf_concl gl)) ist c in
      begin
	db_constr ist.debug ist.env csr;
	csr
      end

  | None ->
      errorlabstrm "cast_constr_interp" 
      (str "Cannot cast a constr without goal")

(* Interprets an open constr expression casted by the current goal *)
let cast_openconstr_interp ist c =
  match ist.goalopt with
  | Some gl -> interp_openconstr ist c (Some (pf_concl gl))
  | None ->
    errorlabstrm "cast_openconstr_interp"
      (str "Cannot cast a constr without goal")

(* Interprets a reduction expression *)
let unfold_interp ist (l,qid) = (l,interp_evaluable_or_metanum ist qid)

let flag_interp ist red =
  { red with rConst = List.map (interp_evaluable_or_metanum ist) red.rConst }

let pattern_interp ist (l,c) = (l,constr_interp ist c)

let redexp_interp ist = function
  | Unfold l -> Unfold (List.map (unfold_interp ist) l)
  | Fold l -> Fold (List.map (constr_interp ist) l)
  | Cbv f -> Cbv (flag_interp ist f)
  | Lazy f -> Lazy (flag_interp ist f)
  | Pattern l -> Pattern (List.map (pattern_interp ist) l)
  | (Red _ | Simpl | Hnf as r) -> r
  | ExtraRedExpr (s,c) -> ExtraRedExpr (s,constr_interp ist c)

let interp_may_eval f ist = function
  | ConstrEval (r,c) ->
      let redexp = redexp_interp ist r in
      (reduction_of_redexp redexp) ist.env ist.evc (f ist c)
  | ConstrContext ((loc,s),c) ->
      (try
	let ic = f ist c
	and ctxt = constr_of_VConstr_context (List.assoc s ist.lfun) in
	subst_meta [-1,ic] ctxt
      with
	| Not_found ->
	    user_err_loc (loc, "constr_interp",
	    str "Unbound context identifier" ++ pr_id s))
  | ConstrTypeOf c -> type_of ist.env ist.evc (f ist c)
  | ConstrTerm c -> f ist c

(* Interprets a constr expression possibly to first evaluate *)
let constr_interp_may_eval ist c =
  let csr = interp_may_eval (interp_constr None) ist c in
  begin
    db_constr ist.debug ist.env csr;
    csr
  end

let rec interp_intro_pattern ist = function
  | IntroOrAndPattern l ->
      IntroOrAndPattern (List.map (List.map (interp_intro_pattern ist)) l)
  | IntroWildcard ->
      IntroWildcard
  | IntroIdentifier id ->
      IntroIdentifier (ident_interp ist id)

let interp_quantified_hypothesis ist = function
  | AnonHyp n -> AnonHyp n
  | NamedHyp id -> 
      match eval_ident ist id with
	| VInteger n -> AnonHyp n
	| v -> NamedHyp (coerce_to_hypothesis ist v)

let interp_induction_arg ist = function
  | ElimOnConstr c -> ElimOnConstr (constr_interp ist c)
  | ElimOnAnonHyp n as x -> x
  | ElimOnIdent (loc,id) ->
      match ist.goalopt with
      | None -> error "No goal"
      | Some gl ->
	  if Tactics.is_quantified_hypothesis id gl then ElimOnIdent (loc,id)
	  else ElimOnConstr
	    (constr_interp ist (Termast.ast_of_qualid (make_short_qualid id)))

let binding_interp ist (b,c) =
  (interp_quantified_hypothesis ist b,constr_interp ist c)

let bindings_interp ist = function
  | NoBindings -> NoBindings
  | ImplicitBindings l -> ImplicitBindings (List.map (constr_interp ist) l)
  | ExplicitBindings l -> ExplicitBindings (List.map (binding_interp ist) l)

let interp_constr_with_bindings ist (c,bl) =
  (constr_interp ist c, bindings_interp ist bl)

(* Interprets a tactic expression *)
let rec val_interp ist ast =

  let value_interp ist =
    match ast with
    (* Immediate evaluation *)
    | TacFun (it,body) -> VFun (ist.lfun,it,body)
    | TacFunRec rc -> funrec_interp ist rc
    | TacLetRecIn (lrc,u) -> letrec_interp ist lrc u
    | TacLetIn (l,u) ->
        let addlfun=letin_interp ist l in
        val_interp { ist with lfun=addlfun@ist.lfun } u
    | TacMatchContext (lr,lmr) ->
       (match ist.goalopt with
          | None -> VContext (ist,lr,lmr)
          | Some g -> match_context_interp ist lr lmr g)
    | TacMatch (c,lmr) -> match_interp ist c lmr
    | TacArg a -> tacarg_interp ist a
    (* Delayed evaluation *)
    | t -> VClosure (ist,t) 
 in
  if ist.debug = DebugOn then
    match debug_prompt ist.goalopt ast with
    | Exit -> VClosure (ist,TacId)
    | v -> value_interp {ist with debug=v}
  else
    value_interp ist

and eval_tactic ist = function
  | TacAtom (loc,t) -> fun gl ->
      (try interp_atomic ist t gl
       with e -> Stdpp.raise_with_loc loc e)
  | TacFun (it,body) -> assert false
  | TacFunRec rc -> assert false
  | TacLetRecIn (lrc,u) -> assert false
  | TacLetIn (l,u) -> assert false
  | TacLetCut l -> letcut_interp ist l
  | TacMatchContext _ -> assert false
  | TacMatch (c,lmr) -> assert false
  | TacId -> tclIDTAC
  | TacFail n -> tclFAIL n
  | TacProgress tac -> tclPROGRESS (tactic_interp ist tac)
  | TacAbstract (tac,s) -> Tactics.tclABSTRACT s (tactic_interp ist tac)
  | TacThen (t1,t2) -> tclTHEN (tactic_interp ist t1) (tactic_interp ist t2)
  | TacThens (t,tl) ->
      tclTHENS (tactic_interp ist t) (List.map (tactic_interp ist) tl)
  | TacDo (n,tac) -> tclDO n (tactic_interp ist tac)
  | TacTry tac -> tclTRY (tactic_interp ist tac)
  | TacInfo tac -> tclINFO (tactic_interp ist tac)
  | TacRepeat tac -> tclREPEAT (tactic_interp ist tac)
  | TacOrelse (tac1,tac2) ->
        tclORELSE (tactic_interp ist tac1) (tactic_interp ist tac2)
  | TacFirst l -> tclFIRST (List.map (tactic_interp ist) l)
  | TacSolve l -> tclSOLVE (List.map (tactic_interp ist) l)
(* Obsolete ??
    | Node(loc0,"APPTACTIC",[Node(loc1,s,l)]) ->
          (Node(loc0,"APP",[Node(loc1,"PRIM-TACTIC",[Node(loc1,s,[])])]@l))
    | Node(_,"PRIMTACTIC",[Node(loc,opn,[])]) ->
        VFTactic ([],(interp_atomic opn))
*)
  | TacArg a -> assert false

and tacarg_interp ist = function
  | TacVoid -> VVoid
  | Reference r -> interp_ltac_reference ist r
  | Integer n -> VInteger n
  | ConstrMayEval c -> VConstr (constr_interp_may_eval ist c)
  | MetaNumArg (_,n) -> VConstr (List.assoc n ist.lmatch)
  | MetaIdArg (loc,id) ->
      (try (* $id can occur in Grammar tactic... *)
        (unrec (List.assoc (id_of_string id) ist.lfun))
      with
        | Not_found -> error_syntactic_metavariables_not_allowed loc)
  | TacCall (loc,f,l) ->
      let fv = tacarg_interp ist f
      and largs = List.map (tacarg_interp ist) l in
      app_interp ist fv largs loc
  | Tacexp t -> val_interp ist t
(*
  | Tacexp t -> VArg (Tacexp ((*tactic_interp ist t,*)t))
*)
(*
    | Node(loc,s,l) ->
        let fv = val_interp ist (Node(loc,"PRIMTACTIC",[Node(loc,s,[])]))
        and largs = List.map (val_interp ist) l in
        app_interp ist fv largs ast
*)
  | TacDynamic(_,t) ->
      let tg = (tag t) in
      if tg = "tactic" then
        let f = (tactic_out t) in val_interp ist (f ist)
      else if tg = "value" then
        value_out t
      else if tg = "constr" then
        VConstr (Pretyping.constr_out t)
      else
        anomaly_loc (loc, "Tacinterp.val_interp",
          (str "Unknown dynamic: <" ++ str (Dyn.tag t) ++ str ">"))

(* Interprets an application node *)
and app_interp ist fv largs loc =
  match fv with
    | VFTactic(l,f) -> VFTactic(l@largs,f)
    | VFun(olfun,var,body) ->
      let (newlfun,lvar,lval)=head_with_value (var,largs) in
      if lvar=[] then
        if lval=[] then
          val_interp { ist with lfun=newlfun@olfun } body
        else
          app_interp ist
            (val_interp {ist with lfun=newlfun@olfun } body) lval loc
      else
        VFun(newlfun@olfun,lvar,body)
    | _ ->
	user_err_loc (loc, "Tacinterp.app_interp",
          (str"Illegal tactic application"))

(* Gives the tactic corresponding to the tactic value *)
and tactic_of_value vle g =
  match vle with
  | VClosure (ist,tac) -> eval_tactic ist tac g
  | VFTactic (largs,f) -> (f largs g) 
  | VRTactic res -> res
  | VTactic tac -> tac g
  | _ -> raise NotTactic

(* Evaluation with FailError catching *)
and eval_with_fail interp ast goal =
  try 
    (match interp ast with
    | VClosure (ist,tac) -> VRTactic (eval_tactic ist tac goal)
    | VFTactic (largs,f) -> VRTactic (f largs goal)
    | VTactic tac -> VRTactic (tac goal)
    | a -> a)
  with | FailError lvl ->
    if lvl = 0 then
      raise No_match
    else
      raise (FailError (lvl - 1))

(* Interprets recursive expressions *)
and funrec_interp ist ((loc,name),(var,body)) =
    let ve = ref VVoid in
    let newve = VFun((name,VRec ve)::ist.lfun,var,body) in
    begin
      ve:=newve;
      !ve
    end

and letrec_interp ist lrc u =
    let lref = Array.to_list (Array.make (List.length lrc) (ref VVoid)) in
    let lenv = List.fold_right2 (fun ((loc,name),_) vref l -> (name,VRec vref)::l)
      lrc lref [] in
    let lve = List.map (fun ((loc,name),(var,body)) ->
                          (name,VFun(lenv@ist.lfun,var,body))) lrc in
    begin
      List.iter2 (fun vref (_,ve) -> vref:=ve) lref lve;
      val_interp { ist with lfun=lve@ist.lfun } u
    end

(* Interprets the clauses of a LetCutIn *)
and letin_interp ist = function
  | [] -> []
  | ((loc,id),None,t)::tl -> (id,tacarg_interp ist t):: (letin_interp ist tl)
  | ((loc,id),Some com,tce)::tl ->
    let typ = interp_may_eval (interp_constr None) ist com
    and tac = tacarg_interp ist tce in
    match tac with
    | VConstr csr ->
      (id,VConstr (mkCast (csr,typ)))::(letin_interp ist tl)
    | VIdentifier id ->
      (try
         (id,VConstr (mkCast (constr_of_id ist id,typ)))::
         (letin_interp ist tl)
       with | Not_found ->
         errorlabstrm "Tacinterp.letin_interp"
         (str "Term or tactic expected"))
    | _ ->
      (try
         let t = tactic_of_value tac in
         let ndc =
           (match ist.goalopt with
           | None -> Global.named_context ()
           | Some g -> pf_hyps g) in
         start_proof id (true,NeverDischarge) ndc typ (fun _ _ -> ());
         by t;
         let (_,({const_entry_body = pft; const_entry_type = _},_,_)) =
           cook_proof () in
         delete_proof id;
         (id,VConstr (mkCast (pft,typ)))::(letin_interp ist tl)
       with | NotTactic ->
         delete_proof id;
         errorlabstrm "Tacinterp.letin_interp"
         (str "Term or tactic expected"))

(* Interprets the clauses of a LetCut *)
and letcut_interp ist = function
  | [] -> tclIDTAC
  | (id,com,tce)::tl ->
    let typ = constr_interp_may_eval ist com
    and tac = tacarg_interp ist tce
    and (ndc,ccl) =
      match ist.goalopt with
      |	None -> 
        errorlabstrm "Tacinterp.letcut_interp" (str
        "Do not use Let for toplevel definitions, use Lemma, ... instead")
      |	Some g -> (pf_hyps g,pf_concl g) in
    (match tac with
    | VConstr csr ->
      let cutt = h_cut typ
      and exat = h_exact csr in
      tclTHENSV cutt [|tclTHEN (introduction id)
      (letcut_interp ist tl);exat|]

(*      let lic = mkLetIn (Name id,csr,typ,ccl) in
      let ntac = refine (mkCast (mkMeta (Logic.new_meta ()),lic)) in
      tclTHEN ntac (tclTHEN (introduction id)
      (letcut_interp ist tl))*)

    | VIdentifier ir ->
      (try
         let cutt = h_cut typ
         and exat = h_exact (constr_of_id ist ir) in
         tclTHENSV cutt [| tclTHEN (introduction id) 
	 (letcut_interp ist tl); exat |]
       with | Not_found ->
         errorlabstrm "Tacinterp.letin_interp"
         (str "Term or tactic expected"))
    | _ ->
      (try
         let t = tactic_of_value tac in
         start_proof id (false,NeverDischarge) ndc typ (fun _ _ -> ());
         by t;
         let (_,({const_entry_body = pft; const_entry_type = _},_,_)) =
           cook_proof () in
         delete_proof id;
         let cutt = h_cut typ
         and exat = h_exact pft in
         tclTHENSV cutt [|tclTHEN (introduction id)
         (letcut_interp ist tl);exat|]

(*         let lic = mkLetIn (Name id,pft,typ,ccl) in
         let ntac = refine (mkCast (mkMeta (Logic.new_meta ()),lic)) in
         tclTHEN ntac (tclTHEN (introduction id)
         (letcut_interp ist tl))*)
       with | NotTactic ->
         delete_proof id;
         errorlabstrm "Tacinterp.letcut_interp"
         (str "Term or tactic expected")))

(* Interprets the Match Context expressions *)
and match_context_interp ist lr lmr g =
(*  let goal =
    (match goalopt with
    | None ->
      errorlabstrm "Tacinterp.apply_match_context" (str
        "No goal available")
    | Some g -> g) in*)
  let rec apply_goal_sub ist goal nocc (id,c) csr mt mhyps hyps =
    try
      let (lgoal,ctxt) = sub_match nocc c csr in
      let lctxt = give_context ctxt id in
      if mhyps = [] then
        eval_with_fail
          (val_interp
            { ist with lfun=lctxt@ist.lfun; lmatch=lgoal@ist.lmatch;
                       goalopt=Some goal})
          mt goal
      else
        apply_hyps_context {ist with goalopt=Some goal} mt lgoal mhyps hyps
    with
    | (FailError _) as e -> raise e
    | NextOccurrence _ -> raise No_match
    | No_match | _ ->
      apply_goal_sub ist goal (nocc + 1) (id,c) csr mt mhyps hyps in
  let rec apply_match_context ist goal = function
    | (All t)::tl ->
      (try
         eval_with_fail (val_interp {ist with goalopt=Some goal }) t
           goal
       with No_match | FailError _ -> apply_match_context ist goal tl
	 | e when Logic.catchable_exception e -> apply_match_context ist goal tl)
    | (Pat (mhyps,mgoal,mt))::tl ->
      let hyps = make_hyps (pf_hyps goal) in
      let hyps = if lr then List.rev hyps else hyps in
      let concl = pf_concl goal in
      (match mgoal with
      |	Term mg ->
        (try
           (let lgoal = apply_matching mg concl in
            begin
            db_matched_concl ist.debug ist.env concl;
            if mhyps = [] then
              eval_with_fail (val_interp
                {ist with lmatch=lgoal@ist.lmatch; goalopt=Some goal}) mt goal
            else
              apply_hyps_context { ist with goalopt=Some goal} mt lgoal mhyps
                hyps
            end)
        with e when is_match_catchable e -> apply_match_context ist goal tl)
      |	Subterm (id,mg) ->
        (try
          apply_goal_sub ist goal 0 (id,mg) concl mt mhyps hyps
        with e when is_match_catchable e ->
	  apply_match_context ist goal tl))
    | _ ->
      errorlabstrm "Tacinterp.apply_match_context" (str
        "No matching clauses for Match Context")

  in
  apply_match_context ist g
    (read_match_rule ist.evc ist.env (constr_list ist) lmr)

(* Interprets a VContext value *)
and vcontext_interp ist = function
  | (VContext (ist',lr,lmr)) as v ->
    (match ist.goalopt with
    | None -> v
    | Some g as go -> 
        let ist = { ist' with goalopt = go; env = pf_env g; evc = project g }
        in match_context_interp ist lr lmr g)
  | v -> v

(* Tries to match the hypotheses in a Match Context *)
and apply_hyps_context ist mt lgmatch mhyps hyps =
  let rec apply_hyps_context_rec ist mt lfun lmatch mhyps lhyps_mhyp
    lhyps_rest noccopt =
  let goal = match ist.goalopt with Some g -> g | _ -> assert false in 
    match mhyps with
      | hd::tl ->
        let (lid,lc,lm,newlhyps,hyp_match,noccopt) =
          apply_one_mhyp_context ist lmatch hd lhyps_mhyp noccopt in
        begin
        db_matched_hyp ist.debug ist.env hyp_match;
        (try
        if tl = [] then
            eval_with_fail
              (val_interp {ist with lfun=lfun@lid@lc@ist.lfun;
                                    lmatch=lmatch@lm@ist.lmatch;
                                    goalopt=Some goal})
              mt goal
        else
          let nextlhyps =
            List.fold_left (fun l e -> if e = hyp_match then l else l@[e]) []
              lhyps_rest in
          apply_hyps_context_rec ist mt
            (lfun@lid@lc) (lmatch@lm) tl nextlhyps nextlhyps None
         with
        | (FailError _) as e -> raise e
	|  e when is_match_catchable e -> 
          (match noccopt with
          | None ->
            apply_hyps_context_rec ist mt lfun
              lmatch mhyps newlhyps lhyps_rest None
          | Some nocc ->
            apply_hyps_context_rec ist mt ist.lfun ist.lmatch mhyps
              (hyp_match::newlhyps) lhyps_rest (Some (nocc + 1))))
        end
      |	[] ->
        anomalylabstrm "apply_hyps_context_rec" (str
          "Empty list should not occur") in
  apply_hyps_context_rec ist mt [] lgmatch mhyps hyps hyps None

  (* Interprets extended tactic generic arguments *)
and genarg_interp ist x =
  match genarg_tag x with
  | BoolArgType -> in_gen wit_bool (out_gen rawwit_bool x)
  | IntArgType -> in_gen wit_int (out_gen rawwit_int x)
  | IntOrVarArgType ->
      let f = function
	| ArgVar (loc,id) ->
	    (match eval_ident ist id with
	      | VInteger n -> ArgArg n
	      | _ ->
		  user_err_loc 
		    (loc,"genarg_interp",str "should be bound to an integer"))
	| ArgArg n as x -> x in
      in_gen wit_int_or_var (f (out_gen rawwit_int_or_var x))
  | StringArgType ->
      in_gen wit_string (out_gen rawwit_string x)
  | PreIdentArgType ->
      in_gen wit_pre_ident (out_gen rawwit_pre_ident x)
  | IdentArgType ->
      in_gen wit_ident (ident_interp ist (out_gen rawwit_ident x))
  | QualidArgType ->
      in_gen wit_qualid (qualid_interp ist (out_gen rawwit_qualid x))
  | ConstrArgType ->
      in_gen wit_constr (constr_interp ist (out_gen rawwit_constr x))
  | ConstrMayEvalArgType ->
      in_gen wit_constr_may_eval (constr_interp_may_eval ist (out_gen rawwit_constr_may_eval x))
  | QuantHypArgType ->
      in_gen wit_quant_hyp
        (interp_quantified_hypothesis ist (out_gen rawwit_quant_hyp x))
  | RedExprArgType ->
      in_gen wit_red_expr (redexp_interp ist (out_gen rawwit_red_expr x))
  | TacticArgType ->
      in_gen wit_tactic ((*tactic_interp ist*) (out_gen rawwit_tactic x))
  | CastedOpenConstrArgType ->
      in_gen wit_casted_open_constr 
        (cast_openconstr_interp ist (out_gen rawwit_casted_open_constr x))
  | ConstrWithBindingsArgType ->
      in_gen wit_constr_with_bindings
        (interp_constr_with_bindings ist (out_gen rawwit_constr_with_bindings x))
  | List0ArgType _ -> app_list0 (genarg_interp ist) x
  | List1ArgType _ -> app_list1 (genarg_interp ist) x
  | OptArgType _ -> app_opt (genarg_interp ist) x
  | PairArgType _ -> app_pair (genarg_interp ist) (genarg_interp ist) x
  | ExtraArgType s -> lookup_genarg_interp s ist x

(* Interprets the Match expressions *)
and match_interp ist constr lmr =
  let rec apply_sub_match ist nocc (id,c) csr
    mt =
    match ist.goalopt with
    | None ->
      (try 
        let (lm,ctxt) = sub_match nocc c csr in
        let lctxt = give_context ctxt id in
        val_interp {ist with lfun=lctxt@ist.lfun; lmatch=lm@ist.lmatch} mt
       with | NextOccurrence _ -> raise No_match)
    | Some g ->
      (try
        let (lm,ctxt) = sub_match nocc c csr in
        let lctxt = give_context ctxt id in
        eval_with_fail (val_interp { ist with lfun=lctxt@ist.lfun;
                                              lmatch=lm@ist.lmatch})
          mt g
       with
       | NextOccurrence n -> raise No_match
       | (FailError _) as e -> raise e
       | e when is_match_catchable e ->
	   apply_sub_match ist (nocc + 1) (id,c) csr mt)
  in
  let rec apply_match ist csr = function
    | (All t)::_ ->
      (match ist.goalopt with
        | None ->
          (try val_interp ist t
           with e when is_match_catchable e -> apply_match ist csr [])
        | Some g ->
          (try
            eval_with_fail (val_interp ist) t g
           with
           | (FailError _) as e -> raise e
	   | e when is_match_catchable e -> 
	       apply_match ist csr []))
    | (Pat ([],mp,mt))::tl ->
      (match mp with
      |	Term c ->
        (match ist.goalopt with
        | None ->
          (try
             val_interp
               { ist with lmatch=(apply_matching c csr)@ist.lmatch } mt
           with e when is_match_catchable e -> apply_match ist csr tl)
        | Some g ->
          (try
            eval_with_fail (val_interp
              { ist with lmatch=(apply_matching c csr)@ist.lmatch }) mt g
           with
           | (FailError _) as e -> raise e
           | e when is_match_catchable e ->
	       apply_match ist csr tl))
      |	Subterm (id,c) ->
        (try
           apply_sub_match ist 0 (id,c) csr mt
         with | No_match ->
           apply_match ist csr tl))
    | _ ->
      errorlabstrm "Tacinterp.apply_match" (str
        "No matching clauses for Match") in
  let csr = constr_interp_may_eval ist constr
  and ilr = read_match_rule ist.evc ist.env (constr_list ist) lmr in
  apply_match ist csr ilr

and tactic_interp ist (ast:raw_tactic_expr) g =
  tac_interp ist.lfun ist.lmatch ist.debug ast g

(* Interprets tactic expressions *)
and tac_interp lfun lmatch debug ast g =
  let evc = project g
  and env = pf_env g in
  let ist = { evc=evc; env=env; lfun=lfun; lmatch=lmatch;
              goalopt=Some g; debug=debug } in
  try tactic_of_value (val_interp ist ast) g
  with | NotTactic ->
    errorlabstrm "Tacinterp.tac_interp" (str
      "Must be a command or must give a tactic value")

(*    errorlabstrm "Tacinterp.tac_interp" (str
    "Interpretation gives a non-tactic value") *)

(*    match (val_interp (evc,env,lfun,lmatch,(Some g),debug) ast) with
      | VClosure tac -> (tac g)
      | VFTactic (largs,f) -> (f largs g) 
      | VRTactic res -> res
      | _ ->
        errorlabstrm "Tacinterp.tac_interp" (str
          "Interpretation gives a non-tactic value")*)

(* Interprets a primitive tactic *)
and interp_atomic ist = function
  (* Basic tactics *)
  | TacIntroPattern l ->
      Elim.h_intro_patterns (List.map (interp_intro_pattern ist) l)
  | TacIntrosUntil hyp -> h_intros_until (interp_quantified_hypothesis ist hyp)
  | TacIntroMove (ido,ido') ->
      h_intro_move (option_app (ident_interp ist) ido)
      (option_app (fun x -> ident_interp ist (snd x)) ido')
  | TacAssumption -> h_assumption
  | TacExact c -> h_exact (cast_constr_interp ist c)
  | TacApply cb -> h_apply (interp_constr_with_bindings ist cb)
  | TacElim (cb,cbo) ->
      h_elim (interp_constr_with_bindings ist cb)
                (option_app (interp_constr_with_bindings ist) cbo)
  | TacElimType c -> h_elim_type (constr_interp ist c)
  | TacCase cb -> h_case (interp_constr_with_bindings ist cb)
  | TacCaseType c -> h_case_type (constr_interp ist c)
  | TacFix (idopt,n) -> h_fix (id_opt_interp ist idopt) n
  | TacMutualFix (id,n,l) ->
      let f (id,n,c) = (ident_interp ist id,n,constr_interp ist c) in
      h_mutual_fix (ident_interp ist id) n (List.map f l)
  | TacCofix idopt -> h_cofix (id_opt_interp ist idopt)
  | TacMutualCofix (id,l) ->
      let f (id,c) = (ident_interp ist id,constr_interp ist c) in
      h_mutual_cofix (ident_interp ist id) (List.map f l)
  | TacCut c -> h_cut (constr_interp ist c)
  | TacTrueCut (ido,c) -> h_true_cut (id_opt_interp ist ido) (constr_interp ist c)
  | TacForward (b,na,c) -> h_forward b (name_interp ist na) (constr_interp ist c)
  | TacGeneralize cl -> h_generalize (List.map (constr_interp ist) cl)
  | TacGeneralizeDep c -> h_generalize_dep (constr_interp ist c)
  | TacLetTac (id,c,clp) ->
      let clp = check_clause_pattern ist clp in
      h_let_tac (ident_interp ist id) (constr_interp ist c) clp
  | TacInstantiate (n,c) -> h_instantiate n (constr_interp ist c)

  (* Automation tactics *)
  | TacTrivial l -> Auto.h_trivial l
  | TacAuto (n, l) -> Auto.h_auto n l
  | TacAutoTDB n -> Dhyp.h_auto_tdb n
  | TacDestructHyp (b,id) -> Dhyp.h_destructHyp b (hyp_interp ist id)
  | TacDestructConcl -> Dhyp.h_destructConcl
  | TacSuperAuto (n,l,b1,b2) -> Auto.h_superauto n l b1 b2
  | TacDAuto (n,p) -> Auto.h_dauto (n,p)

  (* Derived basic tactics *)
  | TacOldInduction h -> h_old_induction (interp_quantified_hypothesis ist h)
  | TacNewInduction c -> h_new_induction (interp_induction_arg ist c)
  | TacOldDestruct h -> h_old_destruct (interp_quantified_hypothesis ist h)
  | TacNewDestruct c -> h_new_destruct (interp_induction_arg ist c)
  | TacDoubleInduction (h1,h2) ->
      let h1 = interp_quantified_hypothesis ist h1 in
      let h2 = interp_quantified_hypothesis ist h2 in
      Elim.h_double_induction h1 h2
  | TacDecomposeAnd c -> Elim.h_decompose_and (constr_interp ist c)
  | TacDecomposeOr c -> Elim.h_decompose_or (constr_interp ist c)
  | TacDecompose (l,c) ->
      let l = List.map (interp_inductive_or_metanum ist) l in
      Elim.h_decompose l (constr_interp ist c)
  | TacSpecialize (n,l) -> h_specialize n (interp_constr_with_bindings ist l)
  | TacLApply c -> h_lapply (constr_interp ist c)

  (* Context management *)
  | TacClear l -> h_clear (List.map (hyp_or_metanum_interp ist) l)
  | TacClearBody l -> h_clear_body (List.map (hyp_or_metanum_interp ist) l)
  | TacMove (dep,id1,id2) ->
      h_move dep (hyp_interp ist id1) (hyp_interp ist id2)
  | TacRename (id1,id2) ->
      h_rename (hyp_interp ist id1) (hyp_interp ist id2)

  (* Constructors *)
  | TacLeft bl -> h_left (bindings_interp ist bl)
  | TacRight bl -> h_right (bindings_interp ist bl)
  | TacSplit bl -> h_split (bindings_interp ist bl)
  | TacAnyConstructor t ->
      abstract_tactic (TacAnyConstructor t)
        (Tactics.any_constructor (option_app (tactic_interp ist) t))
  | TacConstructor (n,bl) ->
      h_constructor (skip_metaid n) (bindings_interp ist bl)

  (* Conversion *)
  | TacReduce (r,cl) ->
      h_reduce (redexp_interp ist r) (List.map (interp_hyp_location ist) cl)
  | TacChange (c,cl) ->
      h_change (constr_interp ist c) (List.map (interp_hyp_location ist) cl)

  (* Equivalence relations *)
  | TacReflexivity -> h_reflexivity
  | TacSymmetry -> h_symmetry
  | TacTransitivity c -> h_transitivity (constr_interp ist c)

  (* For extensions *)
  | TacExtend (opn,l) -> vernac_tactic (opn,List.map (genarg_interp ist) l)
  | TacAlias (_,l,body) ->
      let f x = match genarg_tag x with
  | IdentArgType -> VIdentifier (ident_interp ist (out_gen rawwit_ident x))
  | QualidArgType -> VConstr (constr_of_reference (qualid_interp ist (out_gen rawwit_qualid x)))
  | ConstrArgType -> VConstr (constr_interp ist (out_gen rawwit_constr x))
  | ConstrMayEvalArgType ->
      VConstr (constr_interp_may_eval ist (out_gen rawwit_constr_may_eval x))
  | _ -> failwith "This generic type is not supported in alias" in

      tactic_of_value (val_interp { ist with lfun=(List.map (fun (x,c) -> (id_of_string x,f c)) l)@ist.lfun } body)

let _ = forward_vcontext_interp := vcontext_interp
 
(* Interprets tactic arguments *)
let interp_tacarg sign ast = (*unvarg*) (val_interp sign ast)

(* Initial call for interpretation *)
let interp = fun ast -> tac_interp [] [] !debug ast

(* Hides interpretation for pretty-print *)
let hide_interp t = abstract_tactic_expr (TacArg (Tacexp t)) (interp t)

(* For bad tactic calls *)
let bad_tactic_args s =
  anomalylabstrm s
    (str "Tactic " ++ str s ++ str " called with bad arguments")

(* Declaration of the TAC-DEFINITION object *)
let add (sp,td) = mactab := Gmap.add sp td !mactab

let register_tacdef (sp,td) =
  let ve = val_interp
    {evc=Evd.empty;env=Global.env ();lfun=[];
    lmatch=[]; goalopt=None; debug=get_debug ()}
    td in
  sp,ve

let cache_md (_,defs) =
  (* Needs a rollback if something goes wrong *)
  List.iter (fun (sp,_) -> Nametab.push_tactic (Until 1) sp) defs;
  List.iter add (List.map register_tacdef defs)

let (inMD,outMD) =
  declare_object {(default_object "TAC-DEFINITION") with
     cache_function  = cache_md;
     open_function   = (fun i o -> if i=1 then cache_md o);
     export_function = (fun x -> Some x)}

(* Adds a definition for tactics in the table *)
let make_absolute_name (loc,id) =
  let sp = Lib.make_path id in
  if Gmap.mem sp !mactab then
    errorlabstrm "Tacinterp.add_tacdef" 
      (str "There is already a Meta Definition or a Tactic Definition named "
       ++ pr_sp sp);
  sp

let add_tacdef tacl =
  let lfun = List.map (fun ((loc,id),_) -> id) tacl in
  let tacl = List.map (fun (id,tac) -> (make_absolute_name id,tac)) tacl in
  List.iter (fun (_,def) -> let _ = glob_tactic (lfun,[]) def in ()) tacl;
  let _ = Lib.add_leaf (List.hd lfun) (inMD tacl) in
  List.iter
    (fun id -> Options.if_verbose msgnl (pr_id id ++ str " is defined")) lfun

let interp_redexp env evc r =
  let ist =
    { evc=evc; env=env; lfun=[]; lmatch=[]; goalopt=None; debug=get_debug ()}
  in
  redexp_interp ist r

let _ = Auto.set_extern_interp (fun l -> tac_interp [] l (get_debug()))
let _ = Dhyp.set_extern_interp interp