1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Libobject
open Pattern
open Pp
open Genredexpr
open Glob_term
open Tacred
open Errors
open Util
open Names
open Nameops
open Libnames
open Globnames
open Nametab
open Smartlocate
open Constrexpr
open Constrexpr_ops
open Termops
open Tacexpr
open Genarg
open Mod_subst
open Extrawit
open Misctypes
open Locus
(** Globalization of tactic expressions :
Conversion from [raw_tactic_expr] to [glob_tactic_expr] *)
let dloc = Loc.ghost
let error_global_not_found_loc (loc,qid) =
error_global_not_found_loc loc qid
let error_syntactic_metavariables_not_allowed loc =
user_err_loc
(loc,"out_ident",
str "Syntactic metavariables allowed only in quotations.")
let error_tactic_expected loc =
user_err_loc (loc,"",str "Tactic expected.")
let skip_metaid = function
| AI x -> x
| MetaId (loc,_) -> error_syntactic_metavariables_not_allowed loc
(** Generic arguments *)
type glob_sign = Genarg.glob_sign = {
ltacvars : Id.t list * Id.t list;
(* ltac variables and the subset of vars introduced by Intro/Let/... *)
ltacrecvars : (Id.t * ltac_constant) list;
(* ltac recursive names *)
gsigma : Evd.evar_map;
genv : Environ.env }
let fully_empty_glob_sign =
{ ltacvars = ([],[]); ltacrecvars = [];
gsigma = Evd.empty; genv = Environ.empty_env }
let make_empty_glob_sign () =
{ fully_empty_glob_sign with genv = Global.env () }
(* Table of "pervasives" macros tactics (e.g. auto, simpl, etc.) *)
let atomic_mactab = ref Id.Map.empty
let add_primitive_tactic s tac =
let id = Id.of_string s in
atomic_mactab := Id.Map.add id tac !atomic_mactab
let _ =
let nocl = {onhyps=Some[];concl_occs=AllOccurrences} in
List.iter
(fun (s,t) -> add_primitive_tactic s (TacAtom(dloc,t)))
[ "red", TacReduce(Red false,nocl);
"hnf", TacReduce(Hnf,nocl);
"simpl", TacReduce(Simpl None,nocl);
"compute", TacReduce(Cbv Redops.all_flags,nocl);
"intro", TacIntroMove(None,MoveLast);
"intros", TacIntroPattern [];
"assumption", TacAssumption;
"cofix", TacCofix None;
"trivial", TacTrivial (Off,[],None);
"auto", TacAuto(Off,None,[],None);
"left", TacLeft(false,NoBindings);
"eleft", TacLeft(true,NoBindings);
"right", TacRight(false,NoBindings);
"eright", TacRight(true,NoBindings);
"split", TacSplit(false,false,[NoBindings]);
"esplit", TacSplit(true,false,[NoBindings]);
"constructor", TacAnyConstructor (false,None);
"econstructor", TacAnyConstructor (true,None);
"reflexivity", TacReflexivity;
"symmetry", TacSymmetry nocl
];
List.iter
(fun (s,t) -> add_primitive_tactic s t)
[ "idtac",TacId [];
"fail", TacFail(ArgArg 0,[]);
"fresh", TacArg(dloc,TacFreshId [])
]
let lookup_atomic id = Id.Map.find id !atomic_mactab
let is_atomic_kn kn =
let (_,_,l) = repr_kn kn in
Id.Map.mem (Label.to_id l) !atomic_mactab
(* Summary and Object declaration *)
let mactab =
Summary.ref (KNmap.empty : glob_tactic_expr KNmap.t)
~name:"tactic-definition"
let lookup_ltacref r = KNmap.find r !mactab
(* We have identifier <| global_reference <| constr *)
let find_ident id ist =
List.mem id (fst ist.ltacvars) or
List.mem id (ids_of_named_context (Environ.named_context ist.genv))
let find_recvar qid ist = List.assoc qid ist.ltacrecvars
(* a "var" is a ltac var or a var introduced by an intro tactic *)
let find_var id ist = List.mem id (fst ist.ltacvars)
(* a "ctxvar" is a var introduced by an intro tactic (Intro/LetTac/...) *)
let find_ctxvar id ist = List.mem id (snd ist.ltacvars)
(* a "ltacvar" is an ltac var (Let-In/Fun/...) *)
let find_ltacvar id ist = find_var id ist & not (find_ctxvar id ist)
let find_hyp id ist =
List.mem id (ids_of_named_context (Environ.named_context ist.genv))
(* Globalize a name introduced by Intro/LetTac/... ; it is allowed to *)
(* be fresh in which case it is binding later on *)
let intern_ident l ist id =
(* We use identifier both for variables and new names; thus nothing to do *)
if not (find_ident id ist) then l:=(id::fst !l,id::snd !l);
id
let intern_name l ist = function
| Anonymous -> Anonymous
| Name id -> Name (intern_ident l ist id)
let strict_check = ref false
let adjust_loc loc = if !strict_check then dloc else loc
(* Globalize a name which must be bound -- actually just check it is bound *)
let intern_hyp ist (loc,id as locid) =
if not !strict_check then
locid
else if find_ident id ist then
(dloc,id)
else
Pretype_errors.error_var_not_found_loc loc id
let intern_hyp_or_metaid ist id = intern_hyp ist (skip_metaid id)
let intern_or_var ist = function
| ArgVar locid -> ArgVar (intern_hyp ist locid)
| ArgArg _ as x -> x
let intern_inductive_or_by_notation = smart_global_inductive
let intern_inductive ist = function
| AN (Ident (loc,id)) when find_var id ist -> ArgVar (loc,id)
| r -> ArgArg (intern_inductive_or_by_notation r)
let intern_global_reference ist = function
| Ident (loc,id) when find_var id ist -> ArgVar (loc,id)
| r ->
let loc,_ as lqid = qualid_of_reference r in
try ArgArg (loc,locate_global_with_alias lqid)
with Not_found -> error_global_not_found_loc lqid
let intern_ltac_variable ist = function
| Ident (loc,id) ->
if find_ltacvar id ist then
(* A local variable of any type *)
ArgVar (loc,id)
else
(* A recursive variable *)
ArgArg (loc,find_recvar id ist)
| _ ->
raise Not_found
let intern_constr_reference strict ist = function
| Ident (_,id) as r when not strict & find_hyp id ist ->
GVar (dloc,id), Some (CRef r)
| Ident (_,id) as r when find_ctxvar id ist ->
GVar (dloc,id), if strict then None else Some (CRef r)
| r ->
let loc,_ as lqid = qualid_of_reference r in
GRef (loc,locate_global_with_alias lqid), if strict then None else Some (CRef r)
let intern_move_location ist = function
| MoveAfter id -> MoveAfter (intern_hyp_or_metaid ist id)
| MoveBefore id -> MoveBefore (intern_hyp_or_metaid ist id)
| MoveFirst -> MoveFirst
| MoveLast -> MoveLast
(* Internalize an isolated reference in position of tactic *)
let intern_isolated_global_tactic_reference r =
let (loc,qid) = qualid_of_reference r in
try TacCall (loc,ArgArg (loc,locate_tactic qid),[])
with Not_found ->
match r with
| Ident (_,id) -> Tacexp (lookup_atomic id)
| _ -> raise Not_found
let intern_isolated_tactic_reference strict ist r =
(* An ltac reference *)
try Reference (intern_ltac_variable ist r)
with Not_found ->
(* A global tactic *)
try intern_isolated_global_tactic_reference r
with Not_found ->
(* Tolerance for compatibility, allow not to use "constr:" *)
try ConstrMayEval (ConstrTerm (intern_constr_reference strict ist r))
with Not_found ->
(* Reference not found *)
error_global_not_found_loc (qualid_of_reference r)
(* Internalize an applied tactic reference *)
let intern_applied_global_tactic_reference r =
let (loc,qid) = qualid_of_reference r in
ArgArg (loc,locate_tactic qid)
let intern_applied_tactic_reference ist r =
(* An ltac reference *)
try intern_ltac_variable ist r
with Not_found ->
(* A global tactic *)
try intern_applied_global_tactic_reference r
with Not_found ->
(* Reference not found *)
error_global_not_found_loc (qualid_of_reference r)
(* Intern a reference parsed in a non-tactic entry *)
let intern_non_tactic_reference strict ist r =
(* An ltac reference *)
try Reference (intern_ltac_variable ist r)
with Not_found ->
(* A constr reference *)
try ConstrMayEval (ConstrTerm (intern_constr_reference strict ist r))
with Not_found ->
(* Tolerance for compatibility, allow not to use "ltac:" *)
try intern_isolated_global_tactic_reference r
with Not_found ->
(* By convention, use IntroIdentifier for unbound ident, when not in a def *)
match r with
| Ident (loc,id) when not strict -> IntroPattern (loc,IntroIdentifier id)
| _ ->
(* Reference not found *)
error_global_not_found_loc (qualid_of_reference r)
let intern_message_token ist = function
| (MsgString _ | MsgInt _ as x) -> x
| MsgIdent id -> MsgIdent (intern_hyp_or_metaid ist id)
let intern_message ist = List.map (intern_message_token ist)
let rec intern_intro_pattern lf ist = function
| loc, IntroOrAndPattern l ->
loc, IntroOrAndPattern (intern_or_and_intro_pattern lf ist l)
| loc, IntroIdentifier id ->
loc, IntroIdentifier (intern_ident lf ist id)
| loc, IntroFresh id ->
loc, IntroFresh (intern_ident lf ist id)
| loc, (IntroWildcard | IntroAnonymous | IntroRewrite _ | IntroForthcoming _)
as x -> x
and intern_or_and_intro_pattern lf ist =
List.map (List.map (intern_intro_pattern lf ist))
let intern_quantified_hypothesis ist = function
| AnonHyp n -> AnonHyp n
| NamedHyp id ->
(* Uncomment to disallow "intros until n" in ltac when n is not bound *)
NamedHyp ((*snd (intern_hyp ist (dloc,*)id(* ))*))
let intern_binding_name ist x =
(* We use identifier both for variables and binding names *)
(* Todo: consider the body of the lemma to which the binding refer
and if a term w/o ltac vars, check the name is indeed quantified *)
x
let intern_constr_gen allow_patvar isarity {ltacvars=lfun; gsigma=sigma; genv=env} c =
let warn = if !strict_check then fun x -> x else Constrintern.for_grammar in
let scope = if isarity then Pretyping.IsType else Pretyping.WithoutTypeConstraint in
let c' =
warn (Constrintern.intern_gen scope ~allow_patvar ~ltacvars:(fst lfun,[]) sigma env) c
in
(c',if !strict_check then None else Some c)
let intern_constr = intern_constr_gen false false
let intern_type = intern_constr_gen false true
(* Globalize bindings *)
let intern_binding ist (loc,b,c) =
(loc,intern_binding_name ist b,intern_constr ist c)
let intern_bindings ist = function
| NoBindings -> NoBindings
| ImplicitBindings l -> ImplicitBindings (List.map (intern_constr ist) l)
| ExplicitBindings l -> ExplicitBindings (List.map (intern_binding ist) l)
let intern_constr_with_bindings ist (c,bl) =
(intern_constr ist c, intern_bindings ist bl)
(* TODO: catch ltac vars *)
let intern_induction_arg ist = function
| ElimOnConstr c -> ElimOnConstr (intern_constr_with_bindings ist c)
| ElimOnAnonHyp n as x -> x
| ElimOnIdent (loc,id) ->
if !strict_check then
(* If in a defined tactic, no intros-until *)
match intern_constr ist (CRef (Ident (dloc,id))) with
| GVar (loc,id),_ -> ElimOnIdent (loc,id)
| c -> ElimOnConstr (c,NoBindings)
else
ElimOnIdent (loc,id)
let short_name = function
| AN (Ident (loc,id)) when not !strict_check -> Some (loc,id)
| _ -> None
let intern_evaluable_global_reference ist r =
let lqid = qualid_of_reference r in
try evaluable_of_global_reference ist.genv (locate_global_with_alias lqid)
with Not_found ->
match r with
| Ident (loc,id) when not !strict_check -> EvalVarRef id
| _ -> error_global_not_found_loc lqid
let intern_evaluable_reference_or_by_notation ist = function
| AN r -> intern_evaluable_global_reference ist r
| ByNotation (loc,ntn,sc) ->
evaluable_of_global_reference ist.genv
(Notation.interp_notation_as_global_reference loc
(function ConstRef _ | VarRef _ -> true | _ -> false) ntn sc)
(* Globalize a reduction expression *)
let intern_evaluable ist = function
| AN (Ident (loc,id)) when find_ltacvar id ist -> ArgVar (loc,id)
| AN (Ident (loc,id)) when not !strict_check & find_hyp id ist ->
ArgArg (EvalVarRef id, Some (loc,id))
| AN (Ident (loc,id)) when find_ctxvar id ist ->
ArgArg (EvalVarRef id, if !strict_check then None else Some (loc,id))
| r ->
let e = intern_evaluable_reference_or_by_notation ist r in
let na = short_name r in
ArgArg (e,na)
let intern_unfold ist (l,qid) = (l,intern_evaluable ist qid)
let intern_flag ist red =
{ red with rConst = List.map (intern_evaluable ist) red.rConst }
let intern_constr_with_occurrences ist (l,c) = (l,intern_constr ist c)
let intern_constr_pattern ist ltacvars pc =
let metas,pat =
Constrintern.intern_constr_pattern ist.gsigma ist.genv ~ltacvars pc in
let c = intern_constr_gen true false ist pc in
metas,(c,pat)
let intern_typed_pattern ist p =
let dummy_pat = PRel 0 in
(* we cannot ensure in non strict mode that the pattern is closed *)
(* keeping a constr_expr copy is too complicated and we want anyway to *)
(* type it, so we remember the pattern as a glob_constr only *)
(intern_constr_gen true false ist p,dummy_pat)
let intern_typed_pattern_with_occurrences ist (l,p) =
(l,intern_typed_pattern ist p)
(* This seems fairly hacky, but it's the first way I've found to get proper
globalization of [unfold]. --adamc *)
let dump_glob_red_expr = function
| Unfold occs -> List.iter (fun (_, r) ->
try
Dumpglob.add_glob (loc_of_or_by_notation Libnames.loc_of_reference r)
(Smartlocate.smart_global r)
with e when Errors.noncritical e -> ()) occs
| Cbv grf | Lazy grf ->
List.iter (fun r ->
try
Dumpglob.add_glob (loc_of_or_by_notation Libnames.loc_of_reference r)
(Smartlocate.smart_global r)
with e when Errors.noncritical e -> ()) grf.rConst
| _ -> ()
let intern_red_expr ist = function
| Unfold l -> Unfold (List.map (intern_unfold ist) l)
| Fold l -> Fold (List.map (intern_constr ist) l)
| Cbv f -> Cbv (intern_flag ist f)
| Cbn f -> Cbn (intern_flag ist f)
| Lazy f -> Lazy (intern_flag ist f)
| Pattern l -> Pattern (List.map (intern_constr_with_occurrences ist) l)
| Simpl o -> Simpl (Option.map (intern_typed_pattern_with_occurrences ist) o)
| CbvVm o -> CbvVm (Option.map (intern_typed_pattern_with_occurrences ist) o)
| CbvNative o -> CbvNative (Option.map (intern_typed_pattern_with_occurrences ist) o)
| (Red _ | Hnf | ExtraRedExpr _ as r ) -> r
let intern_in_hyp_as ist lf (id,ipat) =
(intern_hyp_or_metaid ist id, Option.map (intern_intro_pattern lf ist) ipat)
let intern_hyp_list ist = List.map (intern_hyp_or_metaid ist)
let intern_inversion_strength lf ist = function
| NonDepInversion (k,idl,ids) ->
NonDepInversion (k,intern_hyp_list ist idl,
Option.map (intern_intro_pattern lf ist) ids)
| DepInversion (k,copt,ids) ->
DepInversion (k, Option.map (intern_constr ist) copt,
Option.map (intern_intro_pattern lf ist) ids)
| InversionUsing (c,idl) ->
InversionUsing (intern_constr ist c, intern_hyp_list ist idl)
(* Interprets an hypothesis name *)
let intern_hyp_location ist ((occs,id),hl) =
((Locusops.occurrences_map (List.map (intern_or_var ist)) occs,
intern_hyp_or_metaid ist id), hl)
(* Reads a pattern *)
let intern_pattern ist ?(as_type=false) lfun = function
| Subterm (b,ido,pc) ->
let ltacvars = (lfun,[]) in
let (metas,pc) = intern_constr_pattern ist ltacvars pc in
ido, metas, Subterm (b,ido,pc)
| Term pc ->
let ltacvars = (lfun,[]) in
let (metas,pc) = intern_constr_pattern ist ltacvars pc in
None, metas, Term pc
let intern_constr_may_eval ist = function
| ConstrEval (r,c) -> ConstrEval (intern_red_expr ist r,intern_constr ist c)
| ConstrContext (locid,c) ->
ConstrContext (intern_hyp ist locid,intern_constr ist c)
| ConstrTypeOf c -> ConstrTypeOf (intern_constr ist c)
| ConstrTerm c -> ConstrTerm (intern_constr ist c)
(* Reads the hypotheses of a "match goal" rule *)
let rec intern_match_goal_hyps ist lfun = function
| (Hyp ((_,na) as locna,mp))::tl ->
let ido, metas1, pat = intern_pattern ist ~as_type:true lfun mp in
let lfun, metas2, hyps = intern_match_goal_hyps ist lfun tl in
let lfun' = name_cons na (Option.List.cons ido lfun) in
lfun', metas1@metas2, Hyp (locna,pat)::hyps
| (Def ((_,na) as locna,mv,mp))::tl ->
let ido, metas1, patv = intern_pattern ist ~as_type:false lfun mv in
let ido', metas2, patt = intern_pattern ist ~as_type:true lfun mp in
let lfun, metas3, hyps = intern_match_goal_hyps ist lfun tl in
let lfun' = name_cons na (Option.List.cons ido' (Option.List.cons ido lfun)) in
lfun', metas1@metas2@metas3, Def (locna,patv,patt)::hyps
| [] -> lfun, [], []
(* Utilities *)
let extract_let_names lrc =
List.fold_right
(fun ((loc,name),_) l ->
if List.mem name l then
user_err_loc
(loc, "glob_tactic", str "This variable is bound several times.");
name::l)
lrc []
let clause_app f = function
{ onhyps=None; concl_occs=nl } ->
{ onhyps=None; concl_occs=nl }
| { onhyps=Some l; concl_occs=nl } ->
{ onhyps=Some(List.map f l); concl_occs=nl}
let assert_tactic_installed = ref (fun _ -> ())
let set_assert_tactic_installed f = assert_tactic_installed := f
(* Globalizes tactics : raw_tactic_expr -> glob_tactic_expr *)
let rec intern_atomic lf ist x =
match (x:raw_atomic_tactic_expr) with
(* Basic tactics *)
| TacIntroPattern l ->
TacIntroPattern (List.map (intern_intro_pattern lf ist) l)
| TacIntrosUntil hyp -> TacIntrosUntil (intern_quantified_hypothesis ist hyp)
| TacIntroMove (ido,hto) ->
TacIntroMove (Option.map (intern_ident lf ist) ido,
intern_move_location ist hto)
| TacAssumption -> TacAssumption
| TacExact c -> TacExact (intern_constr ist c)
| TacExactNoCheck c -> TacExactNoCheck (intern_constr ist c)
| TacVmCastNoCheck c -> TacVmCastNoCheck (intern_constr ist c)
| TacApply (a,ev,cb,inhyp) ->
TacApply (a,ev,List.map (intern_constr_with_bindings ist) cb,
Option.map (intern_in_hyp_as ist lf) inhyp)
| TacElim (ev,cb,cbo) ->
TacElim (ev,intern_constr_with_bindings ist cb,
Option.map (intern_constr_with_bindings ist) cbo)
| TacElimType c -> TacElimType (intern_type ist c)
| TacCase (ev,cb) -> TacCase (ev,intern_constr_with_bindings ist cb)
| TacCaseType c -> TacCaseType (intern_type ist c)
| TacFix (idopt,n) -> TacFix (Option.map (intern_ident lf ist) idopt,n)
| TacMutualFix (id,n,l) ->
let f (id,n,c) = (intern_ident lf ist id,n,intern_type ist c) in
TacMutualFix (intern_ident lf ist id, n, List.map f l)
| TacCofix idopt -> TacCofix (Option.map (intern_ident lf ist) idopt)
| TacMutualCofix (id,l) ->
let f (id,c) = (intern_ident lf ist id,intern_type ist c) in
TacMutualCofix (intern_ident lf ist id, List.map f l)
| TacCut c -> TacCut (intern_type ist c)
| TacAssert (otac,ipat,c) ->
TacAssert (Option.map (intern_pure_tactic ist) otac,
Option.map (intern_intro_pattern lf ist) ipat,
intern_constr_gen false (not (Option.is_empty otac)) ist c)
| TacGeneralize cl ->
TacGeneralize (List.map (fun (c,na) ->
intern_constr_with_occurrences ist c,
intern_name lf ist na) cl)
| TacGeneralizeDep c -> TacGeneralizeDep (intern_constr ist c)
| TacLetTac (na,c,cls,b,eqpat) ->
let na = intern_name lf ist na in
TacLetTac (na,intern_constr ist c,
(clause_app (intern_hyp_location ist) cls),b,
(Option.map (intern_intro_pattern lf ist) eqpat))
(* Automation tactics *)
| TacTrivial (d,lems,l) -> TacTrivial (d,List.map (intern_constr ist) lems,l)
| TacAuto (d,n,lems,l) ->
TacAuto (d,Option.map (intern_or_var ist) n,
List.map (intern_constr ist) lems,l)
(* Derived basic tactics *)
| TacSimpleInductionDestruct (isrec,h) ->
TacSimpleInductionDestruct (isrec,intern_quantified_hypothesis ist h)
| TacInductionDestruct (ev,isrec,(l,el,cls)) ->
TacInductionDestruct (ev,isrec,(List.map (fun (c,(ipato,ipats)) ->
(intern_induction_arg ist c,
(Option.map (intern_intro_pattern lf ist) ipato,
Option.map (intern_intro_pattern lf ist) ipats))) l,
Option.map (intern_constr_with_bindings ist) el,
Option.map (clause_app (intern_hyp_location ist)) cls))
| TacDoubleInduction (h1,h2) ->
let h1 = intern_quantified_hypothesis ist h1 in
let h2 = intern_quantified_hypothesis ist h2 in
TacDoubleInduction (h1,h2)
| TacDecomposeAnd c -> TacDecomposeAnd (intern_constr ist c)
| TacDecomposeOr c -> TacDecomposeOr (intern_constr ist c)
| TacDecompose (l,c) -> let l = List.map (intern_inductive ist) l in
TacDecompose (l,intern_constr ist c)
| TacSpecialize (n,l) -> TacSpecialize (n,intern_constr_with_bindings ist l)
| TacLApply c -> TacLApply (intern_constr ist c)
(* Context management *)
| TacClear (b,l) -> TacClear (b,List.map (intern_hyp_or_metaid ist) l)
| TacClearBody l -> TacClearBody (List.map (intern_hyp_or_metaid ist) l)
| TacMove (dep,id1,id2) ->
TacMove (dep,intern_hyp_or_metaid ist id1,intern_move_location ist id2)
| TacRename l ->
TacRename (List.map (fun (id1,id2) ->
intern_hyp_or_metaid ist id1,
intern_hyp_or_metaid ist id2) l)
| TacRevert l -> TacRevert (List.map (intern_hyp_or_metaid ist) l)
(* Constructors *)
| TacLeft (ev,bl) -> TacLeft (ev,intern_bindings ist bl)
| TacRight (ev,bl) -> TacRight (ev,intern_bindings ist bl)
| TacSplit (ev,b,bll) -> TacSplit (ev,b,List.map (intern_bindings ist) bll)
| TacAnyConstructor (ev,t) -> TacAnyConstructor (ev,Option.map (intern_pure_tactic ist) t)
| TacConstructor (ev,n,bl) -> TacConstructor (ev,intern_or_var ist n,intern_bindings ist bl)
(* Conversion *)
| TacReduce (r,cl) ->
dump_glob_red_expr r;
TacReduce (intern_red_expr ist r, clause_app (intern_hyp_location ist) cl)
| TacChange (None,c,cl) ->
let is_onhyps = match cl.onhyps with
| None | Some [] -> true
| _ -> false
in
let is_onconcl = match cl.concl_occs with
| AllOccurrences | NoOccurrences -> true
| _ -> false
in
TacChange (None,
(if is_onhyps && is_onconcl
then intern_type ist c else intern_constr ist c),
clause_app (intern_hyp_location ist) cl)
| TacChange (Some p,c,cl) ->
TacChange (Some (intern_typed_pattern ist p),intern_constr ist c,
clause_app (intern_hyp_location ist) cl)
(* Equivalence relations *)
| TacReflexivity -> TacReflexivity
| TacSymmetry idopt ->
TacSymmetry (clause_app (intern_hyp_location ist) idopt)
| TacTransitivity c -> TacTransitivity (Option.map (intern_constr ist) c)
(* Equality and inversion *)
| TacRewrite (ev,l,cl,by) ->
TacRewrite
(ev,
List.map (fun (b,m,c) -> (b,m,intern_constr_with_bindings ist c)) l,
clause_app (intern_hyp_location ist) cl,
Option.map (intern_pure_tactic ist) by)
| TacInversion (inv,hyp) ->
TacInversion (intern_inversion_strength lf ist inv,
intern_quantified_hypothesis ist hyp)
(* For extensions *)
| TacExtend (loc,opn,l) ->
!assert_tactic_installed opn;
TacExtend (adjust_loc loc,opn,List.map (intern_genarg ist) l)
| TacAlias (loc,s,l,(dir,body)) ->
let l = List.map (fun (id,a) -> (id,intern_genarg ist a)) l in
TacAlias (loc,s,l,(dir,body))
and intern_tactic onlytac ist tac = snd (intern_tactic_seq onlytac ist tac)
and intern_tactic_seq onlytac ist = function
| TacAtom (loc,t) ->
let lf = ref ist.ltacvars in
let t = intern_atomic lf ist t in
!lf, TacAtom (adjust_loc loc, t)
| TacFun tacfun -> ist.ltacvars, TacFun (intern_tactic_fun ist tacfun)
| TacLetIn (isrec,l,u) ->
let (l1,l2) = ist.ltacvars in
let ist' = { ist with ltacvars = (extract_let_names l @ l1, l2) } in
let l = List.map (fun (n,b) ->
(n,intern_tacarg !strict_check false (if isrec then ist' else ist) b)) l in
ist.ltacvars, TacLetIn (isrec,l,intern_tactic onlytac ist' u)
| TacMatchGoal (lz,lr,lmr) ->
ist.ltacvars, TacMatchGoal(lz,lr, intern_match_rule onlytac ist lmr)
| TacMatch (lz,c,lmr) ->
ist.ltacvars,
TacMatch (lz,intern_tactic_or_tacarg ist c,intern_match_rule onlytac ist lmr)
| TacId l -> ist.ltacvars, TacId (intern_message ist l)
| TacFail (n,l) ->
ist.ltacvars, TacFail (intern_or_var ist n,intern_message ist l)
| TacProgress tac -> ist.ltacvars, TacProgress (intern_pure_tactic ist tac)
| TacShowHyps tac -> ist.ltacvars, TacShowHyps (intern_pure_tactic ist tac)
| TacAbstract (tac,s) ->
ist.ltacvars, TacAbstract (intern_pure_tactic ist tac,s)
| TacThen (t1,[||],t2,[||]) ->
let lfun', t1 = intern_tactic_seq onlytac ist t1 in
let lfun'', t2 = intern_tactic_seq onlytac { ist with ltacvars = lfun' } t2 in
lfun'', TacThen (t1,[||],t2,[||])
| TacThen (t1,tf,t2,tl) ->
let lfun', t1 = intern_tactic_seq onlytac ist t1 in
let ist' = { ist with ltacvars = lfun' } in
(* Que faire en cas de (tac complexe avec Match et Thens; tac2) ?? *)
lfun', TacThen (t1,Array.map (intern_pure_tactic ist') tf,intern_pure_tactic ist' t2,
Array.map (intern_pure_tactic ist') tl)
| TacThens (t,tl) ->
let lfun', t = intern_tactic_seq true ist t in
let ist' = { ist with ltacvars = lfun' } in
(* Que faire en cas de (tac complexe avec Match et Thens; tac2) ?? *)
lfun', TacThens (t, List.map (intern_pure_tactic ist') tl)
| TacDo (n,tac) ->
ist.ltacvars, TacDo (intern_or_var ist n,intern_pure_tactic ist tac)
| TacTry tac -> ist.ltacvars, TacTry (intern_pure_tactic ist tac)
| TacInfo tac -> ist.ltacvars, TacInfo (intern_pure_tactic ist tac)
| TacRepeat tac -> ist.ltacvars, TacRepeat (intern_pure_tactic ist tac)
| TacTimeout (n,tac) ->
ist.ltacvars, TacTimeout (intern_or_var ist n,intern_tactic onlytac ist tac)
| TacOrelse (tac1,tac2) ->
ist.ltacvars, TacOrelse (intern_pure_tactic ist tac1,intern_pure_tactic ist tac2)
| TacFirst l -> ist.ltacvars, TacFirst (List.map (intern_pure_tactic ist) l)
| TacSolve l -> ist.ltacvars, TacSolve (List.map (intern_pure_tactic ist) l)
| TacComplete tac -> ist.ltacvars, TacComplete (intern_pure_tactic ist tac)
| TacArg (loc,a) -> ist.ltacvars, intern_tactic_as_arg loc onlytac ist a
and intern_tactic_as_arg loc onlytac ist a =
match intern_tacarg !strict_check onlytac ist a with
| TacCall _ | TacExternal _ | Reference _ | TacDynamic _ as a -> TacArg (loc,a)
| Tacexp a -> a
| TacVoid | IntroPattern _ | Integer _
| ConstrMayEval _ | TacFreshId _ as a ->
if onlytac then error_tactic_expected loc else TacArg (loc,a)
| MetaIdArg _ -> assert false
and intern_tactic_or_tacarg ist = intern_tactic false ist
and intern_pure_tactic ist = intern_tactic true ist
and intern_tactic_fun ist (var,body) =
let (l1,l2) = ist.ltacvars in
let lfun' = List.rev_append (Option.List.flatten var) l1 in
(var,intern_tactic_or_tacarg { ist with ltacvars = (lfun',l2) } body)
and intern_tacarg strict onlytac ist = function
| TacVoid -> TacVoid
| Reference r -> intern_non_tactic_reference strict ist r
| IntroPattern ipat ->
let lf = ref([],[]) in (*How to know what names the intropattern binds?*)
IntroPattern (intern_intro_pattern lf ist ipat)
| Integer n -> Integer n
| ConstrMayEval c -> ConstrMayEval (intern_constr_may_eval ist c)
| MetaIdArg (loc,istac,s) ->
(* $id can occur in Grammar tactic... *)
let id = Id.of_string s in
if find_ltacvar id ist then
if istac then Reference (ArgVar (adjust_loc loc,id))
else ConstrMayEval (ConstrTerm (GVar (adjust_loc loc,id), None))
else error_syntactic_metavariables_not_allowed loc
| TacCall (loc,f,[]) -> intern_isolated_tactic_reference strict ist f
| TacCall (loc,f,l) ->
TacCall (loc,
intern_applied_tactic_reference ist f,
List.map (intern_tacarg !strict_check false ist) l)
| TacExternal (loc,com,req,la) ->
TacExternal (loc,com,req,List.map (intern_tacarg !strict_check false ist) la)
| TacFreshId x -> TacFreshId (List.map (intern_or_var ist) x)
| Tacexp t -> Tacexp (intern_tactic onlytac ist t)
| TacDynamic(loc,t) as x ->
(match Dyn.tag t with
| "tactic" | "value" -> x
| "constr" -> if onlytac then error_tactic_expected loc else x
| s -> anomaly ~loc
(str "Unknown dynamic: <" ++ str s ++ str ">"))
(* Reads the rules of a Match Context or a Match *)
and intern_match_rule onlytac ist = function
| (All tc)::tl ->
All (intern_tactic onlytac ist tc) :: (intern_match_rule onlytac ist tl)
| (Pat (rl,mp,tc))::tl ->
let {ltacvars=(lfun,l2); gsigma=sigma; genv=env} = ist in
let lfun',metas1,hyps = intern_match_goal_hyps ist lfun rl in
let ido,metas2,pat = intern_pattern ist lfun mp in
let metas = List.uniquize (metas1@metas2) in
let ist' = { ist with ltacvars = (metas@(Option.List.cons ido lfun'),l2) } in
Pat (hyps,pat,intern_tactic onlytac ist' tc) :: (intern_match_rule onlytac ist tl)
| [] -> []
and intern_genarg ist x =
match genarg_tag x with
| IntOrVarArgType ->
in_gen (glbwit wit_int_or_var)
(intern_or_var ist (out_gen (rawwit wit_int_or_var) x))
| IntroPatternArgType ->
let lf = ref ([],[]) in
(* how to know which names are bound by the intropattern *)
in_gen (glbwit wit_intro_pattern)
(intern_intro_pattern lf ist (out_gen (rawwit wit_intro_pattern) x))
| IdentArgType b ->
let lf = ref ([],[]) in
in_gen (glbwit (wit_ident_gen b))
(intern_ident lf ist (out_gen (rawwit (wit_ident_gen b)) x))
| VarArgType ->
in_gen (glbwit wit_var) (intern_hyp ist (out_gen (rawwit wit_var) x))
| RefArgType ->
in_gen (glbwit wit_ref) (intern_global_reference ist (out_gen (rawwit wit_ref) x))
| GenArgType ->
in_gen (glbwit wit_genarg) (intern_genarg ist (out_gen (rawwit wit_genarg) x))
| SortArgType ->
in_gen (glbwit wit_sort) (out_gen (rawwit wit_sort) x)
| ConstrArgType ->
in_gen (glbwit wit_constr) (intern_constr ist (out_gen (rawwit wit_constr) x))
| ConstrMayEvalArgType ->
in_gen (glbwit wit_constr_may_eval)
(intern_constr_may_eval ist (out_gen (rawwit wit_constr_may_eval) x))
| QuantHypArgType ->
in_gen (glbwit wit_quant_hyp)
(intern_quantified_hypothesis ist (out_gen (rawwit wit_quant_hyp) x))
| RedExprArgType ->
in_gen (glbwit wit_red_expr) (intern_red_expr ist (out_gen (rawwit wit_red_expr) x))
| OpenConstrArgType b ->
in_gen (glbwit (wit_open_constr_gen b))
((),intern_constr ist (snd (out_gen (rawwit (wit_open_constr_gen b)) x)))
| ConstrWithBindingsArgType ->
in_gen (glbwit wit_constr_with_bindings)
(intern_constr_with_bindings ist (out_gen (rawwit wit_constr_with_bindings) x))
| BindingsArgType ->
in_gen (glbwit wit_bindings)
(intern_bindings ist (out_gen (rawwit wit_bindings) x))
| List0ArgType _ -> app_list0 (intern_genarg ist) x
| List1ArgType _ -> app_list1 (intern_genarg ist) x
| OptArgType _ -> app_opt (intern_genarg ist) x
| PairArgType _ -> app_pair (intern_genarg ist) (intern_genarg ist) x
| ExtraArgType s ->
match tactic_genarg_level s with
| Some n ->
(* Special treatment of tactic arguments *)
in_gen (glbwit (wit_tactic n)) (intern_tactic_or_tacarg ist
(out_gen (rawwit (wit_tactic n)) x))
| None ->
snd (Genarg.globalize ist x)
(** Other entry points *)
let glob_tactic x =
Flags.with_option strict_check
(intern_pure_tactic (make_empty_glob_sign ())) x
let glob_tactic_env l env x =
Flags.with_option strict_check
(intern_pure_tactic
{ ltacvars = (l,[]); ltacrecvars = []; gsigma = Evd.empty; genv = env })
x
(***************************************************************************)
(* Tactic registration *)
(* Declaration of the TAC-DEFINITION object *)
let add (kn,td) = mactab := KNmap.add kn td !mactab
let replace (kn,td) = mactab := KNmap.add kn td (KNmap.remove kn !mactab)
type tacdef_kind =
| NewTac of Id.t
| UpdateTac of ltac_constant
let load_md i ((sp,kn),(local,defs)) =
let dp,_ = repr_path sp in
let mp,dir,_ = repr_kn kn in
List.iter (fun (id,t) ->
match id with
| NewTac id ->
let sp = Libnames.make_path dp id in
let kn = Names.make_kn mp dir (Label.of_id id) in
Nametab.push_tactic (Until i) sp kn;
add (kn,t)
| UpdateTac kn -> replace (kn,t)) defs
let open_md i ((sp,kn),(local,defs)) =
let dp,_ = repr_path sp in
let mp,dir,_ = repr_kn kn in
List.iter (fun (id,t) ->
match id with
NewTac id ->
let sp = Libnames.make_path dp id in
let kn = Names.make_kn mp dir (Label.of_id id) in
Nametab.push_tactic (Exactly i) sp kn
| UpdateTac kn -> ()) defs
let cache_md x = load_md 1 x
let subst_kind subst id =
match id with
| NewTac _ -> id
| UpdateTac kn -> UpdateTac (subst_kn subst kn)
let subst_md (subst,(local,defs)) =
(local,
List.map (fun (id,t) ->
(subst_kind subst id,Tacsubst.subst_tactic subst t)) defs)
let classify_md (local,defs as o) =
if local then Dispose else Substitute o
let inMD : bool * (tacdef_kind * glob_tactic_expr) list -> obj =
declare_object {(default_object "TAC-DEFINITION") with
cache_function = cache_md;
load_function = load_md;
open_function = open_md;
subst_function = subst_md;
classify_function = classify_md}
let split_ltac_fun = function
| TacFun (l,t) -> (l,t)
| t -> ([],t)
let pr_ltac_fun_arg = function
| None -> spc () ++ str "_"
| Some id -> spc () ++ pr_id id
let print_ltac id =
try
let kn = Nametab.locate_tactic id in
let l,t = split_ltac_fun (lookup_ltacref kn) in
hv 2 (
hov 2 (str "Ltac" ++ spc() ++ pr_qualid id ++
prlist pr_ltac_fun_arg l ++ spc () ++ str ":=")
++ spc() ++ Pptactic.pr_glob_tactic (Global.env ()) t)
with
Not_found ->
errorlabstrm "print_ltac"
(pr_qualid id ++ spc() ++ str "is not a user defined tactic.")
open Libnames
(* Adds a definition for tactics in the table *)
let make_absolute_name ident repl =
let loc = loc_of_reference ident in
try
let id, kn =
if repl then None, Nametab.locate_tactic (snd (qualid_of_reference ident))
else let id = coerce_reference_to_id ident in
Some id, Lib.make_kn id
in
if KNmap.mem kn !mactab then
if repl then id, kn
else
user_err_loc (loc,"Tacinterp.add_tacdef",
str "There is already an Ltac named " ++ pr_reference ident ++ str".")
else if is_atomic_kn kn then
user_err_loc (loc,"Tacinterp.add_tacdef",
str "Reserved Ltac name " ++ pr_reference ident ++ str".")
else id, kn
with Not_found ->
user_err_loc (loc,"Tacinterp.add_tacdef",
str "There is no Ltac named " ++ pr_reference ident ++ str".")
let add_tacdef local isrec tacl =
let rfun = List.map (fun (ident, b, _) -> make_absolute_name ident b) tacl in
let ist =
{ (make_empty_glob_sign ()) with ltacrecvars =
if isrec then List.map_filter
(function (Some id, qid) -> Some (id, qid) | (None, _) -> None) rfun
else []} in
let gtacl =
List.map2 (fun (_,b,def) (id, qid) ->
let k = if b then UpdateTac qid else NewTac (Option.get id) in
let t = Flags.with_option strict_check (intern_tactic_or_tacarg ist) def in
(k, t))
tacl rfun in
let id0 = fst (List.hd rfun) in
let _ = match id0 with
| Some id0 -> ignore(Lib.add_leaf id0 (inMD (local,gtacl)))
| _ -> Lib.add_anonymous_leaf (inMD (local,gtacl)) in
List.iter
(fun (id,b,_) ->
Flags.if_verbose msg_info (Libnames.pr_reference id ++
(if b then str " is redefined"
else str " is defined")))
tacl
(***************************************************************************)
(* Backwarding recursive needs of tactic glob/interp/eval functions *)
let _ =
let f l = Flags.with_option strict_check
(intern_pure_tactic { (make_empty_glob_sign()) with ltacvars=(l,[])})
in
Hook.set Auto.extern_intern_tac f
|