aboutsummaryrefslogtreecommitdiffhomepage
path: root/tactics/rewrite.ml
blob: ae73d7a41eb968295836972bb392aa7e40acb695 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, *   INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012     *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(*i camlp4deps: "grammar/grammar.cma" i*)

open Errors
open Util
open Nameops
open Namegen
open Term
open Vars
open Reduction
open Tacticals
open Tacmach
open Tactics
open Clenv
open Typeclasses
open Typeclasses_errors
open Classes
open Constrexpr
open Globnames
open Evd
open Misctypes
open Locus
open Locusops
open Decl_kinds
open Elimschemes
open Goal
open Environ
open Pp
open Names
open Tacinterp
open Termops
open Entries
open Libnames

(** Typeclass-based generalized rewriting. *)

(** Constants used by the tactic. *)

let classes_dirpath =
  DirPath.make (List.map Id.of_string ["Classes";"Coq"])

let init_setoid () =
  if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
  else Coqlib.check_required_library ["Coq";"Setoids";"Setoid"]

let get_class str =
  let qualid = Qualid (Loc.ghost, qualid_of_string str) in
    lazy (class_info (Nametab.global qualid))

let proper_class = get_class "Coq.Classes.Morphisms.Proper"
let proper_proxy_class = get_class "Coq.Classes.Morphisms.ProperProxy"

let proper_proj = lazy (mkConst (Option.get (pi3 (List.hd (Lazy.force proper_class).cl_projs))))

let make_dir l = DirPath.make (List.rev_map Id.of_string l)

let try_find_global_reference dir s =
  let sp = Libnames.make_path (make_dir ("Coq"::dir)) (Id.of_string s) in
    Nametab.global_of_path sp

let try_find_reference dir s =
  constr_of_global (try_find_global_reference dir s)

let gen_constant dir s = Coqlib.gen_constant "rewrite" dir s
let coq_eq = lazy(gen_constant ["Init"; "Logic"] "eq")
let coq_f_equal = lazy (gen_constant ["Init"; "Logic"] "f_equal")
let coq_all = lazy (gen_constant ["Init"; "Logic"] "all")
let coq_forall = lazy (gen_constant ["Classes"; "Morphisms"] "forall_def")
let impl = lazy (gen_constant ["Program"; "Basics"] "impl")
let arrow = lazy (gen_constant ["Program"; "Basics"] "arrow")

let reflexive_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Reflexive")
let reflexive_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "reflexivity")

let symmetric_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Symmetric")
let symmetric_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "symmetry")

let transitive_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Transitive")
let transitive_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "transitivity")

let coq_inverse = lazy (gen_constant ["Program"; "Basics"] "flip")

let inverse car rel = mkApp (Lazy.force coq_inverse, [| car ; car; mkProp; rel |])

let forall_relation = lazy (gen_constant ["Classes"; "Morphisms"] "forall_relation")
let pointwise_relation = lazy (gen_constant ["Classes"; "Morphisms"] "pointwise_relation")
let respectful = lazy (gen_constant ["Classes"; "Morphisms"] "respectful")
let default_relation = lazy (gen_constant ["Classes"; "SetoidTactics"] "DefaultRelation")
let subrelation = lazy (gen_constant ["Classes"; "RelationClasses"] "subrelation")
let do_subrelation = lazy (gen_constant ["Classes"; "Morphisms"] "do_subrelation")
let apply_subrelation = lazy (gen_constant ["Classes"; "Morphisms"] "apply_subrelation")
let coq_relation = lazy (gen_constant ["Relations";"Relation_Definitions"] "relation")
let mk_relation a = mkApp (Lazy.force coq_relation, [| a |])
let rewrite_relation_class = lazy (gen_constant ["Classes"; "RelationClasses"] "RewriteRelation")

let proper_type = lazy (constr_of_global (Lazy.force proper_class).cl_impl)
let proper_proxy_type = lazy (constr_of_global (Lazy.force proper_proxy_class).cl_impl)

(** Utility functions *)

let split_head = function
    hd :: tl -> hd, tl
  | [] -> assert(false)

let evd_convertible env evd x y =
  try ignore(Evarconv.the_conv_x env x y evd); true
  with e when Errors.noncritical e -> false

let convertible env evd x y =
  Reductionops.is_conv env evd x y

(** Bookkeeping which evars are constraints so that we can
    remove them at the end of the tactic. *)

let goalevars evars = fst evars
let cstrevars evars = snd evars

let new_cstr_evar (evd,cstrs) env t =
  let evd', t = Evarutil.new_evar evd env t in
    (evd', Evar.Set.add (fst (destEvar t)) cstrs), t

(** Building or looking up instances. *)

let proper_proof env evars carrier relation x =
  let goal = mkApp (Lazy.force proper_proxy_type, [| carrier ; relation; x |])
  in new_cstr_evar evars env goal

let extends_undefined evars evars' =
  let f ev evi found = found || not (Evd.mem evars ev)
  in fold_undefined f evars' false

let find_class_proof proof_type proof_method env evars carrier relation =
  try
    let goal = mkApp (Lazy.force proof_type, [| carrier ; relation |]) in
    let evars', c = Typeclasses.resolve_one_typeclass env evars goal in
      if extends_undefined evars evars' then raise Not_found
      else mkApp (Lazy.force proof_method, [| carrier; relation; c |])
  with e when Logic.catchable_exception e -> raise Not_found

let get_reflexive_proof env = find_class_proof reflexive_type reflexive_proof env
let get_symmetric_proof env = find_class_proof symmetric_type symmetric_proof env
let get_transitive_proof env = find_class_proof transitive_type transitive_proof env

(** Build an infered signature from constraints on the arguments and expected output
    relation *)

let build_signature evars env m (cstrs : (types * types option) option list)
    (finalcstr : (types * types option) option) =
  let mk_relty evars newenv ty obj =
    match obj with
      | None | Some (_, None) ->
	  let relty = mk_relation ty in
	    if closed0 ty then
	      let env' = Environ.reset_with_named_context (Environ.named_context_val env) env in
		new_cstr_evar evars env' relty
	    else new_cstr_evar evars newenv relty
      | Some (x, Some rel) -> evars, rel
  in
  let rec aux env evars ty l =
    let t = Reductionops.whd_betadeltaiota env (fst evars) ty in
      match kind_of_term t, l with
      | Prod (na, ty, b), obj :: cstrs ->
	  if noccurn 1 b (* non-dependent product *) then
	    let ty = Reductionops.nf_betaiota (fst evars) ty in
	    let (evars, b', arg, cstrs) = aux env evars (subst1 mkProp b) cstrs in
	    let evars, relty = mk_relty evars env ty obj in
	    let newarg = mkApp (Lazy.force respectful, [| ty ; b' ; relty ; arg |]) in
	      evars, mkProd(na, ty, b), newarg, (ty, Some relty) :: cstrs
	  else
	    let (evars, b, arg, cstrs) = aux (Environ.push_rel (na, None, ty) env) evars b cstrs in
	    let ty = Reductionops.nf_betaiota (fst evars) ty in
	    let pred = mkLambda (na, ty, b) in
	    let liftarg = mkLambda (na, ty, arg) in
	    let arg' = mkApp (Lazy.force forall_relation, [| ty ; pred ; liftarg |]) in
	      if Option.is_empty obj then evars, mkProd(na, ty, b), arg', (ty, None) :: cstrs
	      else error "build_signature: no constraint can apply on a dependent argument"
      | _, obj :: _ -> anomaly ~label:"build_signature" (Pp.str "not enough products")
      | _, [] ->
	  (match finalcstr with
	  | None | Some (_, None) ->
	      let t = Reductionops.nf_betaiota (fst evars) ty in
	      let evars, rel = mk_relty evars env t None in
		evars, t, rel, [t, Some rel]
	  | Some (t, Some rel) -> evars, t, rel, [t, Some rel])
  in aux env evars m cstrs

type hypinfo = {
  cl : clausenv;
  ext : Evar.Set.t; (* New evars in this clausenv *)
  prf : constr;
  car : constr;
  rel : constr;
  c1 : constr;
  c2 : constr;
  c  : (Tacinterp.interp_sign * Tacexpr.glob_constr_and_expr with_bindings) option;
  abs : bool;
}

(** Looking up declared rewrite relations (instances of [RewriteRelation]) *)
let is_applied_rewrite_relation env sigma rels t =
  match kind_of_term t with
  | App (c, args) when Array.length args >= 2 ->
      let head = if isApp c then fst (destApp c) else c in
	if eq_constr (Lazy.force coq_eq) head then None
	else
	  (try
	      let params, args = Array.chop (Array.length args - 2) args in
	      let env' = Environ.push_rel_context rels env in
	      let evd, evar = Evarutil.new_evar sigma env' (new_Type ()) in
	      let inst = mkApp (Lazy.force rewrite_relation_class, [| evar; mkApp (c, params) |]) in
	      let _ = Typeclasses.resolve_one_typeclass env' evd inst in
		Some (it_mkProd_or_LetIn t rels)
	  with e when Errors.noncritical e -> None)
  | _ -> None

let rec decompose_app_rel env evd t =
  match kind_of_term t with
  | App (f, args) ->
      if Array.length args > 1 then
	let fargs, args = Array.chop (Array.length args - 2) args in
	  mkApp (f, fargs), args
      else
	let (f', args) = decompose_app_rel env evd args.(0) in
	let ty = Typing.type_of env evd args.(0) in
	let f'' = mkLambda (Name (Id.of_string "x"), ty,
	  mkLambda (Name (Id.of_string "y"), lift 1 ty,
	    mkApp (lift 2 f, [| mkApp (lift 2 f', [| mkRel 2; mkRel 1 |]) |])))
	in (f'', args)
  | _ -> error "The term provided is not an applied relation."

let decompose_applied_relation env sigma orig (c,l) =
  let ctype = Typing.type_of env sigma c in
  let find_rel ty =
    let eqclause = Clenv.make_clenv_binding_env_apply env sigma None (c, ty) l in
    let (equiv, args) = decompose_app_rel env eqclause.evd (Clenv.clenv_type eqclause) in
    let c1 = args.(0) and c2 = args.(1) in
    let ty1, ty2 =
      Typing.type_of env eqclause.evd c1, Typing.type_of env eqclause.evd c2
    in
      if not (evd_convertible env eqclause.evd ty1 ty2) then None
      else
	let value = Clenv.clenv_value eqclause in
	let ext = Evarutil.evars_of_term value in
	  Some { cl=eqclause; ext=ext; prf=value;
		 car=ty1; rel = equiv; c1=c1; c2=c2; c=orig; abs=false; }
  in
    match find_rel ctype with
    | Some c -> c
    | None ->
	let ctx,t' = Reductionops.splay_prod_assum env sigma ctype in (* Search for underlying eq *)
	match find_rel (it_mkProd_or_LetIn t' ctx) with
	| Some c -> c
	| None -> error "The term does not end with an applied homogeneous relation."

let decompose_applied_relation_expr env sigma (is, (c,l)) =
  let sigma, cbl = Tacinterp.interp_open_constr_with_bindings is env sigma (c,l) in
  decompose_applied_relation env sigma (Some (is, (c,l))) cbl

(** Hint database named "rewrite", now created directly in Auto *)

let rewrite_db = Auto.rewrite_db

let rewrite_transparent_state () =
  Auto.Hint_db.transparent_state (Auto.searchtable_map rewrite_db)

let rewrite_unif_flags = {
  Unification.modulo_conv_on_closed_terms = None;
  Unification.use_metas_eagerly_in_conv_on_closed_terms = true;
  Unification.modulo_delta = empty_transparent_state;
  Unification.modulo_delta_types = full_transparent_state;
  Unification.modulo_delta_in_merge = None;
  Unification.check_applied_meta_types = true;
  Unification.resolve_evars = false;
  Unification.use_pattern_unification = true;
  Unification.use_meta_bound_pattern_unification = true;
  Unification.frozen_evars = Evar.Set.empty;
  Unification.restrict_conv_on_strict_subterms = false;
  Unification.modulo_betaiota = false;
  Unification.modulo_eta = true;
  Unification.allow_K_in_toplevel_higher_order_unification = true
}

let rewrite2_unif_flags =
  {  Unification.modulo_conv_on_closed_terms = Some cst_full_transparent_state;
     Unification.use_metas_eagerly_in_conv_on_closed_terms = true;
     Unification.modulo_delta = empty_transparent_state;
     Unification.modulo_delta_types = cst_full_transparent_state;
     Unification.modulo_delta_in_merge = None;
     Unification.check_applied_meta_types = true;
     Unification.resolve_evars = false;
     Unification.use_pattern_unification = true;
     Unification.use_meta_bound_pattern_unification = true;
     Unification.frozen_evars = Evar.Set.empty;
     Unification.restrict_conv_on_strict_subterms = false;
     Unification.modulo_betaiota = true;
     Unification.modulo_eta = true;
     Unification.allow_K_in_toplevel_higher_order_unification = true
  }

let general_rewrite_unif_flags () =
  let ts = rewrite_transparent_state () in
    {  Unification.modulo_conv_on_closed_terms = Some ts;
       Unification.use_metas_eagerly_in_conv_on_closed_terms = true;
       Unification.modulo_delta = ts;
       Unification.modulo_delta_types = ts;
       Unification.modulo_delta_in_merge = None;
       Unification.check_applied_meta_types = true;
       Unification.resolve_evars = false;
       Unification.use_pattern_unification = true;
       Unification.use_meta_bound_pattern_unification = true;
       Unification.frozen_evars = Evar.Set.empty;
       Unification.restrict_conv_on_strict_subterms = false;
       Unification.modulo_betaiota = true;
       Unification.modulo_eta = true;
       Unification.allow_K_in_toplevel_higher_order_unification = true }

let refresh_hypinfo env sigma hypinfo =
    let {c=c} = hypinfo in
      match c with
	| Some c ->
	    (* Refresh the clausenv to not get the same meta twice in the goal. *)
	    decompose_applied_relation_expr env sigma c
	| _ -> hypinfo


let solve_remaining_by by env prf =
  match by with
  | None -> env, prf
  | Some tac ->
    let indep = clenv_independent env in
    let tac = eval_tactic tac in
    let evd' =
      List.fold_right (fun mv evd ->
        let ty = Clenv.clenv_nf_meta env (meta_type evd mv) in
	let c,_ = Pfedit.build_by_tactic env.env ty (Tacticals.New.tclCOMPLETE tac) in
	  meta_assign mv (c, (Conv,TypeNotProcessed)) evd)
      indep env.evd
    in { env with evd = evd' }, prf

let extend_evd sigma ext sigma' =
  Evar.Set.fold (fun i acc ->
    Evd.add acc i (Evarutil.nf_evar_info sigma' (Evd.find sigma' i)))
    ext sigma

let shrink_evd sigma ext =
  Evar.Set.fold (fun i acc -> Evd.remove acc i) ext sigma

let no_constraints cstrs =
  fun ev _ -> not (Evar.Set.mem ev cstrs)

let eq_env x y = x == y

let unify_eqn l2r flags env (sigma, cstrs) hypinfo by t =
  if isEvar t then None
  else try
    let hypinfo =
      if hypinfo.abs || eq_env hypinfo.cl.env env then hypinfo
      else refresh_hypinfo env sigma hypinfo
    in
    let {cl=cl; ext=ext; prf=prf; car=car; rel=rel; c1=c1; c2=c2; abs=abs} =
      hypinfo in
    let left = if l2r then c1 else c2 in
    let evd' = Evd.evars_reset_evd ~with_conv_pbs:true sigma cl.evd in
    let evd'' = extend_evd evd' ext cl.evd in
    let cl = { cl with evd = evd'' } in
    let hypinfo, evd', prf, c1, c2, car, rel =
      if abs then
	  let env' = clenv_unify ~flags:rewrite_unif_flags CONV left t cl in
	    hypinfo, env'.evd, prf, c1, c2, car, rel
      else
	  let env' = clenv_unify ~flags CONV left t cl in
	  let env' = Clenvtac.clenv_pose_dependent_evars true env' in
	  let evd' = Typeclasses.resolve_typeclasses ~filter:(no_constraints cstrs)
	    ~fail:true env'.env env'.evd in
	  let env' = { env' with evd = evd' } in
	  let env', prf = solve_remaining_by by env' (Clenv.clenv_value env') in
	  let nf c = Evarutil.nf_evar env'.evd (Clenv.clenv_nf_meta env' c) in
	  let c1 = nf c1 and c2 = nf c2
	  and car = nf car and rel = nf rel
	  and prf = nf prf in
	  let ty1 = Typing.type_of env'.env env'.evd c1
	  and ty2 = Typing.type_of env'.env env'.evd c2
	  in
	    if convertible env env'.evd ty1 ty2 then
	      (if occur_meta_or_existential prf then
		let hypinfo = refresh_hypinfo env env'.evd hypinfo in
		 (hypinfo, env'.evd, prf, c1, c2, car, rel)
	       else (** Evars have been solved, we can go back to the initial evd,
			but keep the potential refinement of existing evars. *)
		let evd' = shrink_evd env'.evd ext in
		  (hypinfo, evd', prf, c1, c2, car, rel))
	    else raise Reduction.NotConvertible
    in
    let res =
      if l2r then (prf, (car, rel, c1, c2))
      else
	try (mkApp (get_symmetric_proof env evd' car rel,
		   [| c1 ; c2 ; prf |]),
	    (car, rel, c2, c1))
	with Not_found ->
	  (prf, (car, inverse car rel, c2, c1))
    in Some (hypinfo, evd', res)
  with e when Class_tactics.catchable e -> None

let unfold_impl t =
  match kind_of_term t with
    | App (arrow, [| a; b |])(*  when eq_constr arrow (Lazy.force impl) *) ->
	mkProd (Anonymous, a, lift 1 b)
    | _ -> assert false

let unfold_all t =
  match kind_of_term t with
    | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
	(match kind_of_term b with
	  | Lambda (n, ty, b) -> mkProd (n, ty, b)
	  | _ -> assert false)
    | _ -> assert false

let unfold_forall t =
  match kind_of_term t with
    | App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
	(match kind_of_term b with
	  | Lambda (n, ty, b) -> mkProd (n, ty, b)
	  | _ -> assert false)
    | _ -> assert false

let arrow_morphism ta tb a b =
  let ap = is_Prop ta and bp = is_Prop tb in
    if ap && bp then mkApp (Lazy.force impl, [| a; b |]), unfold_impl
    else if ap then (* Domain in Prop, CoDomain in Type *)
      mkProd (Anonymous, a, b), (fun x -> x)
    else if bp then (* Dummy forall *)
      mkApp (Lazy.force coq_all, [| a; mkLambda (Anonymous, a, b) |]), unfold_forall
    else (* None in Prop, use arrow *)
      mkApp (Lazy.force arrow, [| a; b |]), unfold_impl

let rec decomp_pointwise n c =
  if Int.equal n 0 then c
  else
    match kind_of_term c with
    | App (f, [| a; b; relb |]) when eq_constr f (Lazy.force pointwise_relation) ->
	decomp_pointwise (pred n) relb
    | App (f, [| a; b; arelb |]) when eq_constr f (Lazy.force forall_relation) ->
	decomp_pointwise (pred n) (Reductionops.beta_applist (arelb, [mkRel 1]))
    | _ -> invalid_arg "decomp_pointwise"

let rec apply_pointwise rel = function
  | arg :: args ->
      (match kind_of_term rel with
      | App (f, [| a; b; relb |]) when eq_constr f (Lazy.force pointwise_relation) ->
	  apply_pointwise relb args
      | App (f, [| a; b; arelb |]) when eq_constr f (Lazy.force forall_relation) ->
	  apply_pointwise (Reductionops.beta_applist (arelb, [arg])) args
      | _ -> invalid_arg "apply_pointwise")
  | [] -> rel

let pointwise_or_dep_relation n t car rel =
  if noccurn 1 car && noccurn 1 rel then
    mkApp (Lazy.force pointwise_relation, [| t; lift (-1) car; lift (-1) rel |])
  else
    mkApp (Lazy.force forall_relation,
	  [| t; mkLambda (n, t, car); mkLambda (n, t, rel) |])

let lift_cstr env evars (args : constr list) c ty cstr =
  let start evars env car =
    match cstr with
    | None | Some (_, None) ->
      new_cstr_evar evars env (mk_relation car)
    | Some (ty, Some rel) -> evars, rel
  in
  let rec aux evars env prod n =
    if Int.equal n 0 then start evars env prod
    else
      match kind_of_term (Reduction.whd_betadeltaiota env prod) with
      | Prod (na, ty, b) ->
	  if noccurn 1 b then
	    let b' = lift (-1) b in
	    let evars, rb = aux evars env b' (pred n) in
	      evars, mkApp (Lazy.force pointwise_relation, [| ty; b'; rb |])
	  else
	    let evars, rb = aux evars (Environ.push_rel (na, None, ty) env) b (pred n) in
	      evars, mkApp (Lazy.force forall_relation,
		    [| ty; mkLambda (na, ty, b); mkLambda (na, ty, rb) |])
      | _ -> raise Not_found
  in
  let rec find env c ty = function
    | [] -> None
    | arg :: args ->
	try let evars, found = aux evars env ty (succ (List.length args)) in
	      Some (evars, found, c, ty, arg :: args)
	with Not_found ->
	  find env (mkApp (c, [| arg |])) (prod_applist ty [arg]) args
  in find env c ty args

let unlift_cstr env sigma = function
  | None -> None
  | Some codom -> Some (decomp_pointwise 1 codom)

type rewrite_flags = { under_lambdas : bool; on_morphisms : bool }

let default_flags = { under_lambdas = true; on_morphisms = true; }

type evars = evar_map * Evar.Set.t (* goal evars, constraint evars *)

type rewrite_proof =
  | RewPrf of constr * constr
  | RewCast of cast_kind

let get_opt_rew_rel = function RewPrf (rel, prf) -> Some rel | _ -> None

type rewrite_result_info = {
  rew_car : constr;
  rew_from : constr;
  rew_to : constr;
  rew_prf : rewrite_proof;
  rew_evars : evars;
}

type 'a rewrite_result =
| Fail
| Same
| Info of 'a

type 'a pure_strategy = 'a -> Environ.env -> Id.t list -> constr -> types ->
  constr option -> evars -> 'a * rewrite_result_info rewrite_result

type strategy = unit pure_strategy

let get_rew_prf r = match r.rew_prf with
  | RewPrf (rel, prf) -> rel, prf
  | RewCast c ->
    let rel = mkApp (Coqlib.build_coq_eq (), [| r.rew_car |]) in
      rel, mkCast (mkApp (Coqlib.build_coq_eq_refl (), [| r.rew_car; r.rew_from |]),
		   c, mkApp (rel, [| r.rew_from; r.rew_to |]))

let resolve_subrelation env avoid car rel prf rel' res =
  if eq_constr rel rel' then res
  else
    let app = mkApp (Lazy.force subrelation, [|car; rel; rel'|]) in
    let evars, subrel = new_cstr_evar res.rew_evars env app in
    let appsub = mkApp (subrel, [| res.rew_from ; res.rew_to ; prf |]) in
      { res with
	rew_prf = RewPrf (rel', appsub);
	rew_evars = evars }

let resolve_morphism env avoid oldt m ?(fnewt=fun x -> x) args args' cstr evars =
  let evars, morph_instance, proj, sigargs, m', args, args' =
    let first = match (Array.findi (fun _ b -> not (Option.is_empty b)) args') with
    | Some i -> i
    | None -> invalid_arg "resolve_morphism" in
    let morphargs, morphobjs = Array.chop first args in
    let morphargs', morphobjs' = Array.chop first args' in
    let appm = mkApp(m, morphargs) in
    let appmtype = Typing.type_of env (goalevars evars) appm in
    let cstrs = List.map
      (Option.map (fun r -> r.rew_car, get_opt_rew_rel r.rew_prf))
      (Array.to_list morphobjs')
    in
      (* Desired signature *)
    let evars, appmtype', signature, sigargs =
      build_signature evars env appmtype cstrs cstr
    in
      (* Actual signature found *)
    let cl_args = [| appmtype' ; signature ; appm |] in
    let app = mkApp (Lazy.force proper_type, cl_args) in
    let env' = Environ.push_named
      (Id.of_string "do_subrelation",
       Some (Lazy.force do_subrelation),
       Lazy.force apply_subrelation)
      env
    in
    let evars, morph = new_cstr_evar evars env' app in
      evars, morph, morph, sigargs, appm, morphobjs, morphobjs'
  in
  let projargs, subst, evars, respars, typeargs =
    Array.fold_left2
      (fun (acc, subst, evars, sigargs, typeargs') x y ->
	let (carrier, relation), sigargs = split_head sigargs in
	  match relation with
	  | Some relation ->
	      let carrier = substl subst carrier
	      and relation = substl subst relation in
	      (match y with
	      | None ->
		  let evars, proof = proper_proof env evars carrier relation x in
		    [ proof ; x ; x ] @ acc, subst, evars, sigargs, x :: typeargs'
	      | Some r ->
		  [ snd (get_rew_prf r); r.rew_to; x ] @ acc, subst, evars,
	      sigargs, r.rew_to :: typeargs')
	  | None ->
	      if not (Option.is_empty y) then
		error "Cannot rewrite the argument of a dependent function";
	      x :: acc, x :: subst, evars, sigargs, x :: typeargs')
      ([], [], evars, sigargs, []) args args'
  in
  let proof = applistc proj (List.rev projargs) in
  let newt = applistc m' (List.rev typeargs) in
    match respars with
	[ a, Some r ] -> evars, proof, a, r, oldt, fnewt newt
      | _ -> assert(false)

let apply_constraint env avoid car rel prf cstr res =
  match cstr with
  | None -> res
  | Some r -> resolve_subrelation env avoid car rel prf r res

let apply_rule l2r flags by loccs : (hypinfo * int) pure_strategy =
  let (nowhere_except_in,occs) = convert_occs loccs in
  let is_occ occ =
    if nowhere_except_in
    then Int.List.mem occ occs
    else not (Int.List.mem occ occs)
  in
  fun (hypinfo, occ) env avoid t ty cstr evars ->
    let unif = unify_eqn l2r flags env evars hypinfo by t in
    match unif with
    | None -> ((hypinfo, occ), Fail)
    | Some (hypinfo, evd', (prf, (car, rel, c1, c2))) ->
      let occ = succ occ in
      let res =
        if not (is_occ occ) then Fail
        else if eq_constr t c2 then Same
        else
          let res = { rew_car = ty; rew_from = c1;
                      rew_to = c2; rew_prf = RewPrf (rel, prf);
                      rew_evars = evd', cstrevars evars }
          in Info (apply_constraint env avoid car rel prf cstr res)
      in
      ((hypinfo, occ), res)

let apply_lemma l2r flags c by loccs : strategy =
  fun () env avoid t ty cstr evars ->
    let hypinfo =
      decompose_applied_relation env (goalevars evars) None c
    in
    let _, res = apply_rule l2r flags by loccs (hypinfo, 0) env avoid t ty cstr evars in
    (), res

let make_leibniz_proof c ty r =
  let prf =
    match r.rew_prf with
    | RewPrf (rel, prf) ->
	let rel = mkApp (Lazy.force coq_eq, [| ty |]) in
	let prf =
	  mkApp (Lazy.force coq_f_equal,
		[| r.rew_car; ty;
		   mkLambda (Anonymous, r.rew_car, c);
		   r.rew_from; r.rew_to; prf |])
	in RewPrf (rel, prf)
    | RewCast k -> r.rew_prf
  in
    { r with rew_car = ty;
      rew_from = subst1 r.rew_from c; rew_to = subst1 r.rew_to c; rew_prf = prf }

let reset_env env =
  let env' = Global.env_of_context (Environ.named_context_val env) in
    Environ.push_rel_context (Environ.rel_context env) env'

let fold_match ?(force=false) env sigma c =
  let (ci, p, c, brs) = destCase c in
  let cty = Retyping.get_type_of env sigma c in
  let dep, pred, exists, (sk, eff) =
    let env', ctx, body =
      let ctx, pred = decompose_lam_assum p in
      let env' = Environ.push_rel_context ctx env in
	env', ctx, pred
    in
    let sortp = Retyping.get_sort_family_of env' sigma body in
    let sortc = Retyping.get_sort_family_of env sigma cty in
    let dep = not (noccurn 1 body) in
    let pred = if dep then p else
	it_mkProd_or_LetIn (subst1 mkProp body) (List.tl ctx)
    in
    let sk =
      if sortp == InProp then
	if sortc == InProp then
	  if dep then case_dep_scheme_kind_from_prop
	  else case_scheme_kind_from_prop
	else (
	  if dep
	  then case_dep_scheme_kind_from_type_in_prop
	  else case_scheme_kind_from_type)
      else ((* sortc <> InProp by typing *)
	if dep
	then case_dep_scheme_kind_from_type
	else case_scheme_kind_from_type)
    in
    let exists = Ind_tables.check_scheme sk ci.ci_ind in
      if exists || force then
	dep, pred, exists, Ind_tables.find_scheme sk ci.ci_ind
      else raise Not_found
  in
  let app =
    let ind, args = Inductive.find_rectype env cty in
    let pars, args = List.chop ci.ci_npar args in
    let meths = List.map (fun br -> br) (Array.to_list brs) in
      applist (mkConst sk, pars @ [pred] @ meths @ args @ [c])
  in
    sk, (if exists then env else reset_env env), app, eff

let unfold_match env sigma sk app =
  match kind_of_term app with
  | App (f', args) when eq_constr f' (mkConst sk) ->
      let v = Environ.constant_value (Global.env ()) sk in
	Reductionops.whd_beta sigma (mkApp (v, args))
  | _ -> app

let is_rew_cast = function RewCast _ -> true | _ -> false

let coerce env avoid cstr res =
  let rel, prf = get_rew_prf res in
    apply_constraint env avoid res.rew_car rel prf cstr res

let subterm all flags (s : 'a pure_strategy) : 'a pure_strategy =
  let rec aux state env avoid t ty cstr evars =
    let cstr' = Option.map (fun c -> (ty, Some c)) cstr in
      match kind_of_term t with
      | App (m, args) ->
	  let rewrite_args state success =
	    let state, args', evars', progress =
	      Array.fold_left
		(fun (state, acc, evars, progress) arg ->
		  if not (Option.is_empty progress) && not all then (state, None :: acc, evars, progress)
		  else
		    let state, res = s state env avoid arg (Typing.type_of env (goalevars evars) arg) None evars in
		      match res with
		      | Same -> (state, None :: acc, evars, if Option.is_empty progress then Some false else progress)
		      | Info r -> (state, Some r :: acc, r.rew_evars, Some true)
		      | Fail -> (state, None :: acc, evars, progress))
		(state, [], evars, success) args
	    in
	      state, match progress with
	      | None -> Fail
	      | Some false -> Same
	      | Some true ->
		  let args' = Array.of_list (List.rev args') in
		    if Array.exists
		      (function
			 | None -> false
			 | Some r -> not (is_rew_cast r.rew_prf)) args'
		    then
		      let evars', prf, car, rel, c1, c2 = resolve_morphism env avoid t m args args' cstr' evars' in
		      let res = { rew_car = ty; rew_from = c1;
				  rew_to = c2; rew_prf = RewPrf (rel, prf);
				  rew_evars = evars' }
		      in Info res
		    else
		      let args' = Array.map2
			(fun aorig anew ->
			   match anew with None -> aorig
			   | Some r -> r.rew_to) args args'
		      in
		      let res = { rew_car = ty; rew_from = t;
				  rew_to = mkApp (m, args'); rew_prf = RewCast DEFAULTcast;
				  rew_evars = evars' }
		      in Info res

	  in
	    if flags.on_morphisms then
	      let mty = Typing.type_of env (goalevars evars) m in
	      let evars, cstr', m, mty, argsl, args =
		let argsl = Array.to_list args in
		  match lift_cstr env evars argsl m mty None with
		  | Some (evars, cstr', m, mty, args) ->
		    evars, Some cstr', m, mty, args, Array.of_list args
		  | None -> evars, None, m, mty, argsl, args
	      in
	      let state, m' = s state env avoid m mty cstr' evars in
		match m' with
		| Fail -> rewrite_args state None (* Standard path, try rewrite on arguments *)
		| Same -> rewrite_args state (Some false)
		| Info r ->
		    (* We rewrote the function and get a proof of pointwise rel for the arguments.
		       We just apply it. *)
		    let prf = match r.rew_prf with
		      | RewPrf (rel, prf) ->
			  RewPrf (apply_pointwise rel argsl, mkApp (prf, args))
		      | x -> x
		    in
		    let res =
		      { rew_car = prod_appvect r.rew_car args;
			rew_from = mkApp(r.rew_from, args); rew_to = mkApp(r.rew_to, args);
			rew_prf = prf;
			rew_evars = r.rew_evars }
		    in
		      state, match prf with
		      | RewPrf (rel, prf) ->
			Info (apply_constraint env avoid res.rew_car rel prf cstr res)
		      | RewCast _ -> Info res
	    else rewrite_args state None

      | Prod (n, x, b) when noccurn 1 b ->
	  let b = subst1 mkProp b in
	  let tx = Typing.type_of env (goalevars evars) x and tb = Typing.type_of env (goalevars evars) b in
	  let mor, unfold = arrow_morphism tx tb x b in
	  let state, res = aux state env avoid mor ty cstr evars in
	    state, (match res with
	    | Info r -> Info { r with rew_to = unfold r.rew_to }
	    | Fail | Same -> res)

      (* 		if x' = None && flags.under_lambdas then *)
      (* 		  let lam = mkLambda (n, x, b) in *)
      (* 		  let lam', occ = aux env lam occ None in *)
      (* 		  let res =  *)
      (* 		    match lam' with *)
      (* 		    | None -> None *)
      (* 		    | Some (prf, (car, rel, c1, c2)) -> *)
      (* 			Some (resolve_morphism env sigma t *)
      (* 				 ~fnewt:unfold_all *)
      (* 				 (Lazy.force coq_all) [| x ; lam |] [| None; lam' |] *)
      (* 				 cstr evars) *)
      (* 		  in res, occ *)
      (* 		else *)

      | Prod (n, dom, codom) ->
	  let lam = mkLambda (n, dom, codom) in
	  let app, unfold =
	    if eq_constr ty mkProp then
	      mkApp (Lazy.force coq_all, [| dom; lam |]), unfold_all
	    else mkApp (Lazy.force coq_forall, [| dom; lam |]), unfold_forall
	  in
	  let state, res = aux state env avoid app ty cstr evars in
	    state, (match res with
	     | Info r -> Info { r with rew_to = unfold r.rew_to }
	     | Fail | Same -> res)

      | Lambda (n, t, b) when flags.under_lambdas ->
	  let n' = name_app (fun id -> Tactics.fresh_id_in_env avoid id env) n in
	  let env' = Environ.push_rel (n', None, t) env in
	  let state, b' = s state env' avoid b (Typing.type_of env' (goalevars evars) b) (unlift_cstr env (goalevars evars) cstr) evars in
	    state, (match b' with
	    | Info r ->
		let prf = match r.rew_prf with
		  | RewPrf (rel, prf) ->
		      let rel = pointwise_or_dep_relation n' t r.rew_car rel in
		      let prf = mkLambda (n', t, prf) in
			RewPrf (rel, prf)
		  | x -> x
		in
		  Info { r with
		    rew_prf = prf;
		    rew_car = mkProd (n, t, r.rew_car);
		    rew_from = mkLambda(n, t, r.rew_from);
		    rew_to = mkLambda (n, t, r.rew_to) }
	    | Fail | Same -> b')

      | Case (ci, p, c, brs) ->
	  let cty = Typing.type_of env (goalevars evars) c in
	  let cstr' = Some (mkApp (Lazy.force coq_eq, [| cty |])) in
	  let state, c' = s state env avoid c cty cstr' evars in
	  let state, res =
	    match c' with
	    | Info r ->
		let res = make_leibniz_proof (mkCase (ci, lift 1 p, mkRel 1, Array.map (lift 1) brs)) ty r in
		  state, Info (coerce env avoid cstr res)
	    | Same | Fail ->
	      if Array.for_all (Int.equal 0) ci.ci_cstr_ndecls then
		let cstr = Some (mkApp (Lazy.force coq_eq, [| ty |])) in
		let state, found, brs' = Array.fold_left
		  (fun (state, found, acc) br ->
		   if not (Option.is_empty found) then (state, found, fun x -> lift 1 br :: acc x)
		   else
                     let state, res = s state env avoid br ty cstr evars in
		     match res with
		     | Info r -> (state, Some r, fun x -> mkRel 1 :: acc x)
		     | Fail | Same -> (state, None, fun x -> lift 1 br :: acc x))
		  (state, None, fun x -> []) brs
		in
		  state, match found with
		  | Some r ->
		    let ctxc = mkCase (ci, lift 1 p, lift 1 c, Array.of_list (List.rev (brs' c'))) in
		      Info (make_leibniz_proof ctxc ty r)
		  | None -> c'
	      else
		match try Some (fold_match env (goalevars evars) t) with Not_found -> None with
		| None -> state, c'
		| Some (cst, _, t',_) -> (* eff XXX *)
                  let state, res = aux state env avoid t' ty cstr evars in
		  state, match res with
		  | Info prf ->
		    Info { prf with
				 rew_from = t; rew_to = unfold_match env (goalevars evars) cst prf.rew_to }
		  | x' -> c'
	  in
	    state, (match res with
	     | Info r ->
	       let rel, prf = get_rew_prf r in
		 Info (apply_constraint env avoid r.rew_car rel prf cstr r)
	     | x -> x)
      | _ -> state, Fail
  in aux

let all_subterms = subterm true default_flags
let one_subterm = subterm false default_flags

(** Requires transitivity of the rewrite step, if not a reduction.
    Not tail-recursive. *)

let transitivity state env avoid (res : rewrite_result_info) (next : 'a pure_strategy) : 'a * rewrite_result_info rewrite_result =
  let state, res' = next state env avoid res.rew_to res.rew_car (get_opt_rew_rel res.rew_prf) res.rew_evars in
  state, match res' with
  | Fail -> Fail
  | Same -> Info res
  | Info res' ->
      match res.rew_prf with
      | RewCast c -> Info { res' with rew_from = res.rew_from }
      | RewPrf (rew_rel, rew_prf) ->
	  match res'.rew_prf with
	  | RewCast _ -> Info { res with rew_to = res'.rew_to }
	  | RewPrf (res'_rel, res'_prf) ->
	      let prfty = mkApp (Lazy.force transitive_type, [| res.rew_car; rew_rel |]) in
	      let evars, prf = new_cstr_evar res'.rew_evars env prfty in
	      let prf = mkApp (prf, [|res.rew_from; res'.rew_from; res'.rew_to;
				      rew_prf; res'_prf |])
	      in Info { res' with rew_from = res.rew_from;
		rew_evars = evars; rew_prf = RewPrf (res'_rel, prf) }

(** Rewriting strategies.

    Inspired by ELAN's rewriting strategies:
    http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4049
*)

module Strategies =
  struct

    let fail : 'a pure_strategy =
      fun s env avoid t ty cstr evars -> (s, Fail)

    let id : 'a pure_strategy =
      fun s env avoid t ty cstr evars -> (s, Same)

    let refl : 'a pure_strategy =
      fun s env avoid t ty cstr evars ->
	let evars, rel = match cstr with
	  | None -> new_cstr_evar evars env (mk_relation ty)
	  | Some r -> evars, r
	in
	let evars, proof =
	  let mty = mkApp (Lazy.force proper_proxy_type, [| ty ; rel; t |]) in
	    new_cstr_evar evars env mty
	in
	  s, Info { rew_car = ty; rew_from = t; rew_to = t;
		       rew_prf = RewPrf (rel, proof); rew_evars = evars }

    let progress (s : 'a pure_strategy) : 'a pure_strategy =
      fun state env avoid t ty cstr evars ->
        let state, res = s state env avoid t ty cstr evars in
	state, match res with
	| Fail -> Fail
	| Same -> Fail
	| Info _ -> res

    let seq (fst : 'a pure_strategy) (snd : 'a pure_strategy) : 'a pure_strategy =
      fun state env avoid t ty cstr evars ->
        let state, res = fst state env avoid t ty cstr evars in
	match res with
	| Fail -> state, Fail
	| Same -> snd state env avoid t ty cstr evars
	| Info res -> transitivity state env avoid res snd

    let choice fst snd : 'a pure_strategy =
      fun state env avoid t ty cstr evars ->
        let state, res = fst state env avoid t ty cstr evars in
	match res with
	| Fail -> snd state env avoid t ty cstr evars
	| Same | Info _ -> state, res

    let try_ str : 'a pure_strategy = choice str id

    let fix (f : 'a pure_strategy -> 'a pure_strategy) : 'a pure_strategy =
      let rec aux state env avoid t ty cstr evars =
        f aux state env avoid t ty cstr evars
      in aux

    let any (s : 'a pure_strategy) : 'a pure_strategy =
      fix (fun any -> try_ (seq s any))

    let repeat (s : 'a pure_strategy) : 'a pure_strategy =
      seq s (any s)

    let bu (s : 'a pure_strategy) : 'a pure_strategy =
      fix (fun s' -> seq (choice (progress (all_subterms s')) s) (try_ s'))

    let td (s : 'a pure_strategy) : 'a pure_strategy =
      fix (fun s' -> seq (choice s (progress (all_subterms s'))) (try_ s'))

    let innermost (s : 'a pure_strategy) : 'a pure_strategy =
      fix (fun ins -> choice (one_subterm ins) s)

    let outermost (s : 'a pure_strategy) : 'a pure_strategy =
      fix (fun out -> choice s (one_subterm out))

    let lemmas flags cs : 'a pure_strategy =
      List.fold_left (fun tac (l,l2r,by) ->
	choice tac (apply_lemma l2r flags l by AllOccurrences))
	fail cs

    let old_hints (db : string) : 'a pure_strategy =
      let rules = Autorewrite.find_rewrites db in
	lemmas rewrite_unif_flags
	  (List.map (fun hint -> ((hint.Autorewrite.rew_lemma, NoBindings), hint.Autorewrite.rew_l2r, hint.Autorewrite.rew_tac)) rules)

    let hints (db : string) : 'a pure_strategy =
      fun state env avoid t ty cstr evars ->
      let rules = Autorewrite.find_matches db t in
      let lemma hint = ((hint.Autorewrite.rew_lemma, NoBindings), hint.Autorewrite.rew_l2r,
			hint.Autorewrite.rew_tac) in
      let lems = List.map lemma rules in
	lemmas rewrite_unif_flags lems state env avoid t ty cstr evars

    let reduce (r : Redexpr.red_expr) : 'a pure_strategy =
      fun state env avoid t ty cstr evars ->
        let rfn, ckind = Redexpr.reduction_of_red_expr env r in
	  let t' = rfn env (goalevars evars) t in
	    if eq_constr t' t then
	      state, Same
	    else
	      state, Info { rew_car = ty; rew_from = t; rew_to = t';
			   rew_prf = RewCast ckind; rew_evars = evars }

    let fold_glob c : 'a pure_strategy =
      fun state env avoid t ty cstr evars ->
(* 	let sigma, (c,_) = Tacinterp.interp_open_constr_with_bindings is env (goalevars evars) c in *)
	let sigma, c = Pretyping.understand_tcc (goalevars evars) env c in
	let unfolded =
	  try Tacred.try_red_product env sigma c
	  with e when Errors.noncritical e ->
            error "fold: the term is not unfoldable !"
	in
	  try
	    let sigma = Unification.w_unify env sigma CONV ~flags:Unification.elim_flags unfolded t in
	    let c' = Evarutil.nf_evar sigma c in
	      state, Info { rew_car = ty; rew_from = t; rew_to = c';
			   rew_prf = RewCast DEFAULTcast;
			   rew_evars = sigma, cstrevars evars }
	  with e when Errors.noncritical e -> state, Fail


end

(** The strategy for a single rewrite, dealing with occurences. *)

let rewrite_with l2r flags c occs : strategy =
  fun () env avoid t ty cstr evars ->
    let gevars = goalevars evars in
    let hypinfo = decompose_applied_relation_expr env gevars c in
    let (is, _) = c in
    let avoid = match TacStore.get is.extra f_avoid_ids with
    | None -> avoid
    | Some l -> l @ avoid
    in
    let avoid = Id.Map.fold (fun id _ accu -> id :: accu) is.lfun avoid in
    let app = apply_rule l2r flags None occs in
    let strat = Strategies.fix (fun aux -> Strategies.choice app (subterm true default_flags aux)) in
    let _, res = strat (hypinfo, 0) env avoid t ty cstr (gevars, cstrevars evars) in
    ((), res)

let apply_strategy (s : strategy) env avoid concl cstr evars =
  let _, res =
    s () env avoid concl (Typing.type_of env (goalevars evars) concl)
      (Option.map snd cstr) evars
  in
    match res with
    | Fail -> Fail
    | Same -> Same
    | Info res ->
	Info (res.rew_prf, res.rew_evars, res.rew_car, res.rew_from, res.rew_to)

let solve_constraints env evars =
  Typeclasses.resolve_typeclasses env ~split:false ~fail:true evars

let nf_zeta =
  Reductionops.clos_norm_flags (Closure.RedFlags.mkflags [Closure.RedFlags.fZETA])

exception RewriteFailure of std_ppcmds

type result = (evar_map * constr option * types) rewrite_result

let cl_rewrite_clause_aux ?(abs=None) strat env avoid sigma concl is_hyp : result =
  let cstr =
    let sort = mkProp in
    let impl = Lazy.force impl in
      match is_hyp with
      | None -> (sort, inverse sort impl)
      | Some _ -> (sort, impl)
  in
  let evars = (sigma, Evar.Set.empty) in
  let eq = apply_strategy strat env avoid concl (Some cstr) evars in
    match eq with
    | Fail -> Fail
    | Same -> Same
    | Info (p, (evars, cstrs), car, oldt, newt) ->
	let evars' = solve_constraints env evars in
	let newt = Evarutil.nf_evar evars' newt in
	let evars = (* Keep only original evars (potentially instantiated) and goal evars,
		       the rest has been defined and substituted already. *)
	  Evd.fold (fun ev evi acc ->
	    if Evar.Set.mem ev cstrs then Evd.remove acc ev
	    else acc) evars' evars'
	in
        match p with
        | RewCast c -> Info (evars, None, newt)
        | RewPrf (_, p) ->
          let p = nf_zeta env evars' (Evarutil.nf_evar evars' p) in
          let term = match abs with
          | None -> p
          | Some (t, ty) ->
            let t = Evarutil.nf_evar evars' t in
            let ty = Evarutil.nf_evar evars' ty in
            mkApp (mkLambda (Name (Id.of_string "lemma"), ty, p), [| t |])
          in
          let proof = match is_hyp with
          | None -> term
          | Some id -> mkApp (term, [| mkVar id |])
          in
          Info (evars, Some proof, newt)

(** ppedrot: this is a workaround. The current implementation of rewrite leaks
    evar maps. We know that we should not produce effects in here, so we reput
    them after computing... *)
let tclEFFECT (tac : tactic) : tactic = fun gl ->
  let eff = Evd.eval_side_effects gl.sigma in
  let gls = tac gl in
  let sigma = Evd.emit_side_effects eff (Evd.drop_side_effects gls.sigma) in
  { gls with sigma; }

let cl_rewrite_clause_tac ?abs strat clause gl =
  let evartac evd = Refiner.tclEVARS evd in
  let treat res =
    match res with
    | Fail -> tclFAIL 0 (str "Nothing to rewrite")
    | Same ->
	tclFAIL 0 (str"No progress made")
    | Info (undef, p, newt) ->
	let tac =
	  match clause, p with
	  | Some id, Some p ->
	      cut_replacing id newt (Tacmach.refine p)
	  | Some id, None ->
	      change_in_hyp None newt (id, InHypTypeOnly)
	  | None, Some p ->
	      let name = next_name_away_with_default "H" Anonymous (pf_ids_of_hyps gl) in
		tclTHENLAST
		  (Tacmach.internal_cut_no_check false name newt)
		  (tclTHEN (Tactics.revert [name]) (Tacmach.refine p))
	  | None, None -> change_in_concl None newt
	in tclTHEN (evartac undef) tac
  in
  let tac =
    try
      let concl, is_hyp =
	match clause with
	| Some id -> pf_get_hyp_typ gl id, Some id
	| None -> pf_concl gl, None
      in
      let sigma = project gl in
      let concl = Evarutil.nf_evar sigma concl in
      let res = cl_rewrite_clause_aux ?abs strat (pf_env gl) [] sigma concl is_hyp in
	treat res
    with
    | TypeClassError (env, (UnsatisfiableConstraints _ as e)) ->
	Refiner.tclFAIL 0
	  (str"Unable to satisfy the rewriting constraints."
	   ++ fnl () ++ Himsg.explain_typeclass_error env e)
  in tclEFFECT tac gl


let bind_gl_info f =
  bind concl (fun c -> bind env (fun v -> bind defs (fun ev -> f c v ev)))

let new_refine c : Goal.subgoals Goal.sensitive =
  let refable = Goal.Refinable.make
    (fun handle -> Goal.Refinable.constr_of_open_constr handle true c)
  in Goal.bind refable Goal.refine

let assert_replacing id newt tac =
  let sens = bind_gl_info
    (fun concl env sigma ->
       let nc' =
	 Environ.fold_named_context
	   (fun _ (n, b, t as decl) nc' ->
	      if Id.equal n id then (n, b, newt) :: nc'
	      else decl :: nc')
	   env ~init:[]
       in
       let reft = Refinable.make
	 (fun h ->
	    Goal.bind (Refinable.mkEvar h
			 (Environ.reset_with_named_context (val_of_named_context nc') env) concl)
	      (fun ev ->
		 Goal.bind (Refinable.mkEvar h env newt)
		   (fun ev' ->
		      let inst =
			fold_named_context
			  (fun _ (n, b, t) inst ->
			     if Id.equal n id then ev' :: inst
			     else if Option.is_empty b then mkVar n :: inst else inst)
			  env ~init:[]
		      in
		      let (e, args) = destEvar ev in
			Goal.return
                         (mkEvar (e, Array.of_list inst)))))
       in Goal.bind reft Goal.refine)
  in Tacticals.New.tclTHEN (Proofview.tclSENSITIVE sens)
       (Proofview.tclFOCUS 2 2 tac)

let newfail n s =
  Proofview.tclZERO (Refiner.FailError (n, lazy s))

let cl_rewrite_clause_newtac ?abs strat clause =
  let treat (res, is_hyp) =
    match res with
    | Fail -> newfail 0 (str "Nothing to rewrite")
    | Same ->
	newfail 0 (str"No progress made")
    | Info res ->
	match is_hyp, res with
	| Some id, (undef, Some p, newt) ->
	    assert_replacing id newt (Proofview.tclSENSITIVE (new_refine (undef, p)))
	| Some id, (undef, None, newt) ->
	    Proofview.tclSENSITIVE (Goal.convert_hyp false (id, None, newt))
	| None, (undef, Some p, newt) ->
	    let refable = Goal.Refinable.make
	      (fun handle ->
		 Goal.bind env
		   (fun env -> Goal.bind (Refinable.mkEvar handle env newt)
		      (fun ev ->
			 Goal.Refinable.constr_of_open_constr handle true
			   (undef, mkApp (p, [| ev |])))))
	    in
	      Proofview.tclSENSITIVE (Goal.bind refable Goal.refine)
	| None, (undef, None, newt) ->
	    Proofview.tclSENSITIVE (Goal.convert_concl false newt)
  in
  let info =
    bind_gl_info
      (fun concl env sigma ->
	 let ty, is_hyp =
	   match clause with
	   | Some id -> Environ.named_type id env, Some id
	   | None -> concl, None
	 in
	   try
	     let res =
	       cl_rewrite_clause_aux ?abs strat env [] sigma ty is_hyp
	     in return (res, is_hyp)
	   with
	   | TypeClassError (env, (UnsatisfiableConstraints _ as e)) ->
	     raise (RewriteFailure (str"Unable to satisfy the rewriting constraints."
			++ fnl () ++ Himsg.explain_typeclass_error env e)))
  in Proofview.Goal.lift info (fun i -> treat i)

let newtactic_init_setoid () =
  try init_setoid (); Proofview.tclUNIT ()
  with e when Errors.noncritical e -> Proofview.tclZERO e

let tactic_init_setoid () =
  init_setoid (); tclIDTAC

let cl_rewrite_clause_new_strat ?abs strat clause =
  Tacticals.New.tclTHEN (newtactic_init_setoid ())
  (try cl_rewrite_clause_newtac ?abs strat clause
   with RewriteFailure s ->
   newfail 0 (str"setoid rewrite failed: " ++ s))

let cl_rewrite_clause_newtac' l left2right occs clause =
  Proofview.tclFOCUS 1 1
       (cl_rewrite_clause_new_strat (rewrite_with left2right rewrite_unif_flags l occs) clause)

let cl_rewrite_clause_strat strat clause =
  tclTHEN (tactic_init_setoid ())
  (fun gl ->
     (*     let gl = { gl with sigma = Typeclasses.mark_unresolvables gl.sigma } in *)
     try cl_rewrite_clause_tac strat clause gl
     with RewriteFailure e ->
       tclFAIL 0 (str"setoid rewrite failed: " ++ e) gl
     | Refiner.FailError (n, pp) ->
       tclFAIL n (str"setoid rewrite failed: " ++ Lazy.force pp) gl)

let cl_rewrite_clause l left2right occs clause gl =
  cl_rewrite_clause_strat (rewrite_with left2right (general_rewrite_unif_flags ()) l occs) clause gl

let apply_glob_constr c l2r occs = fun () env avoid t ty cstr evars ->
  let evd, c = (Pretyping.understand_tcc (goalevars evars) env c) in
    apply_lemma l2r (general_rewrite_unif_flags ()) (c, NoBindings)
      None occs () env avoid t ty cstr (evd, cstrevars evars)

let interp_glob_constr_list env sigma cl =
  let understand sigma (c, _) =
    let sigma, c = Pretyping.understand_tcc sigma env c in
    (sigma, ((c, NoBindings), true, None))
  in
  List.fold_map understand sigma cl

type ('constr,'redexpr) strategy_ast =
  | StratId | StratFail | StratRefl
  | StratUnary of string * ('constr,'redexpr) strategy_ast
  | StratBinary of string * ('constr,'redexpr) strategy_ast * ('constr,'redexpr) strategy_ast
  | StratConstr of 'constr * bool
  | StratTerms of 'constr list
  | StratHints of bool * string
  | StratEval of 'redexpr
  | StratFold of 'constr

let rec map_strategy (f : 'a -> 'a2) (g : 'b -> 'b2) : ('a,'b) strategy_ast -> ('a2,'b2) strategy_ast = function
  | StratId | StratFail | StratRefl as s -> s
  | StratUnary (s, str) -> StratUnary (s, map_strategy f g str)
  | StratBinary (s, str, str') -> StratBinary (s, map_strategy f g str, map_strategy f g str')
  | StratConstr (c, b) -> StratConstr (f c, b)
  | StratTerms l -> StratTerms (List.map f l)
  | StratHints (b, id) -> StratHints (b, id)
  | StratEval r -> StratEval (g r)
  | StratFold c -> StratFold (f c)

let rec strategy_of_ast = function
  | StratId -> Strategies.id
  | StratFail -> Strategies.fail
  | StratRefl -> Strategies.refl
  | StratUnary (f, s) ->
    let s' = strategy_of_ast s in
    let f' = match f with
      | "subterms" -> all_subterms
      | "subterm" -> one_subterm
      | "innermost" -> Strategies.innermost
      | "outermost" -> Strategies.outermost
      | "bottomup" -> Strategies.bu
      | "topdown" -> Strategies.td
      | "progress" -> Strategies.progress
      | "try" -> Strategies.try_
      | "any" -> Strategies.any
      | "repeat" -> Strategies.repeat
      | _ -> anomaly ~label:"strategy_of_ast" (str"Unkwnon strategy: " ++ str f)
    in f' s'
  | StratBinary (f, s, t) ->
    let s' = strategy_of_ast s in
    let t' = strategy_of_ast t in
    let f' = match f with
      | "compose" -> Strategies.seq
      | "choice" -> Strategies.choice
      | _ -> anomaly ~label:"strategy_of_ast" (str"Unkwnon strategy: " ++ str f)
    in f' s' t'
  | StratConstr (c, b) -> apply_glob_constr (fst c) b AllOccurrences
  | StratHints (old, id) -> if old then Strategies.old_hints id else Strategies.hints id
  | StratTerms l ->
    (fun () env avoid t ty cstr (evars, cstrs) ->
     let evars, cl = interp_glob_constr_list env evars l in
       Strategies.lemmas rewrite_unif_flags cl () env avoid t ty cstr (evars, cstrs))
  | StratEval r ->
    (fun () env avoid t ty cstr evars ->
     let (sigma,r_interp) = Tacinterp.interp_redexp env (goalevars evars) r in
       Strategies.reduce r_interp () env avoid t ty cstr (sigma,cstrevars evars))
  | StratFold c -> Strategies.fold_glob (fst c)


let mkappc s l = CAppExpl (Loc.ghost,(None,(Libnames.Ident (Loc.ghost,Id.of_string s))),l)

let declare_an_instance n s args =
  ((Loc.ghost,Name n), Explicit,
  CAppExpl (Loc.ghost, (None, Qualid (Loc.ghost, qualid_of_string s)),
	   args))

let declare_instance a aeq n s = declare_an_instance n s [a;aeq]

let anew_instance global binders instance fields =
  new_instance binders instance (Some (CRecord (Loc.ghost,None,fields)))
    ~global ~generalize:false None

let declare_instance_refl global binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive"
  in anew_instance global binders instance
       [(Ident (Loc.ghost,Id.of_string "reflexivity"),lemma)]

let declare_instance_sym global binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric"
  in anew_instance global binders instance
       [(Ident (Loc.ghost,Id.of_string "symmetry"),lemma)]

let declare_instance_trans global binders a aeq n lemma =
  let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive"
  in anew_instance global binders instance
       [(Ident (Loc.ghost,Id.of_string "transitivity"),lemma)]

let declare_relation ?(binders=[]) a aeq n refl symm trans =
  init_setoid ();
  let global = not (Locality.make_section_locality (Locality.LocalityFixme.consume ())) in
  let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.RelationClasses.RewriteRelation"
  in ignore(anew_instance global binders instance []);
  match (refl,symm,trans) with
      (None, None, None) -> ()
    | (Some lemma1, None, None) ->
	ignore (declare_instance_refl global binders a aeq n lemma1)
    | (None, Some lemma2, None) ->
	ignore (declare_instance_sym global binders a aeq n lemma2)
    | (None, None, Some lemma3) ->
	ignore (declare_instance_trans global binders a aeq n lemma3)
    | (Some lemma1, Some lemma2, None) ->
	ignore (declare_instance_refl global binders a aeq n lemma1);
	ignore (declare_instance_sym global binders a aeq n lemma2)
    | (Some lemma1, None, Some lemma3) ->
	let _lemma_refl = declare_instance_refl global binders a aeq n lemma1 in
	let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in
	let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder"
	in ignore(
	    anew_instance global binders instance
	      [(Ident (Loc.ghost,Id.of_string "PreOrder_Reflexive"), lemma1);
	       (Ident (Loc.ghost,Id.of_string "PreOrder_Transitive"),lemma3)])
    | (None, Some lemma2, Some lemma3) ->
	let _lemma_sym = declare_instance_sym global binders a aeq n lemma2 in
	let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in
	let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER"
	in ignore(
	    anew_instance global binders instance
	      [(Ident (Loc.ghost,Id.of_string "PER_Symmetric"), lemma2);
	       (Ident (Loc.ghost,Id.of_string "PER_Transitive"),lemma3)])
     | (Some lemma1, Some lemma2, Some lemma3) ->
	let _lemma_refl = declare_instance_refl global binders a aeq n lemma1 in
	let _lemma_sym = declare_instance_sym global binders a aeq n lemma2 in
	let _lemma_trans = declare_instance_trans global binders a aeq n lemma3 in
	let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
	in ignore(
	  anew_instance global binders instance
	    [(Ident (Loc.ghost,Id.of_string "Equivalence_Reflexive"), lemma1);
	     (Ident (Loc.ghost,Id.of_string "Equivalence_Symmetric"), lemma2);
	     (Ident (Loc.ghost,Id.of_string "Equivalence_Transitive"), lemma3)])

let cHole = CHole (Loc.ghost, None, None)

let proper_projection r ty =
  let ctx, inst = decompose_prod_assum ty in
  let mor, args = destApp inst in
  let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in
  let app = mkApp (Lazy.force proper_proj,
		  Array.append args [| instarg |]) in
    it_mkLambda_or_LetIn app ctx

let declare_projection n instance_id r =
  let ty = Global.type_of_global r in
  let c = constr_of_global r in
  let term = proper_projection c ty in
  let env = Global.env() in
  let typ = Typing.type_of env Evd.empty term in
  let ctx, typ = decompose_prod_assum typ in
  let typ =
    let n =
      let rec aux t =
	match kind_of_term t with
	    App (f, [| a ; a' ; rel; rel' |]) when eq_constr f (Lazy.force respectful) ->
	      succ (aux rel')
	  | _ -> 0
      in
      let init =
	match kind_of_term typ with
	    App (f, args) when eq_constr f (Lazy.force respectful) ->
	      mkApp (f, fst (Array.chop (Array.length args - 2) args))
	  | _ -> typ
      in aux init
    in
    let ctx,ccl = Reductionops.splay_prod_n env Evd.empty (3 * n) typ
    in it_mkProd_or_LetIn ccl ctx
  in
  let typ = it_mkProd_or_LetIn typ ctx in
  let cst =
    { const_entry_body = Future.from_val (term,Declareops.no_seff);
      const_entry_secctx = None;
      const_entry_type = Some typ;
      const_entry_opaque = false;
      const_entry_inline_code = false;
      const_entry_feedback = None;
  } in
    ignore(Declare.declare_constant n (Entries.DefinitionEntry cst, Decl_kinds.IsDefinition Decl_kinds.Definition))

let build_morphism_signature m =
  let env = Global.env () in
  let m = Constrintern.interp_constr Evd.empty env m in
  let t = Typing.type_of env Evd.empty m in
  let evdref = ref (Evd.empty, Evar.Set.empty) in
  let cstrs =
    let rec aux t =
      match kind_of_term t with
	| Prod (na, a, b) ->
	    None :: aux b
	| _ -> []
    in aux t
  in
  let evars, t', sig_, cstrs = build_signature !evdref env t cstrs None in
  let _ = evdref := evars in
  let _ = List.iter
    (fun (ty, rel) ->
      Option.iter (fun rel ->
	let default = mkApp (Lazy.force default_relation, [| ty; rel |]) in
	let evars,c = new_cstr_evar !evdref env default in
	  evdref := evars)
	rel)
    cstrs
  in
  let morph =
    mkApp (Lazy.force proper_type, [| t; sig_; m |])
  in
  let evd = solve_constraints env (goalevars !evdref) in
  let m = Evarutil.nf_evar evd morph in
    Evarutil.check_evars env Evd.empty evd m; m

let default_morphism sign m =
  let env = Global.env () in
  let t = Typing.type_of env Evd.empty m in
  let evars, _, sign, cstrs =
    build_signature (Evd.empty, Evar.Set.empty) env t (fst sign) (snd sign)
  in
  let morph =
    mkApp (Lazy.force proper_type, [| t; sign; m |])
  in
  let evars, mor = resolve_one_typeclass env (fst evars) morph in
    mor, proper_projection mor morph

let add_setoid global binders a aeq t n =
  init_setoid ();
  let _lemma_refl = declare_instance_refl global binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in
  let _lemma_sym = declare_instance_sym global binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in
  let _lemma_trans = declare_instance_trans global binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in
  let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
  in ignore(
    anew_instance global binders instance
      [(Ident (Loc.ghost,Id.of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]);
       (Ident (Loc.ghost,Id.of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]);
       (Ident (Loc.ghost,Id.of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])])

let make_tactic name =
  let open Tacexpr in
  let loc = Loc.ghost in
  let tacpath = Libnames.qualid_of_string name in
  let tacname = Qualid (loc, tacpath) in
  TacArg (loc, TacCall (loc, tacname, []))

let add_morphism_infer glob m n =
  init_setoid ();
  let instance_id = add_suffix n "_Proper" in
  let instance = build_morphism_signature m in
    if Lib.is_modtype () then
      let cst = Declare.declare_constant ~internal:Declare.KernelSilent instance_id
				(Entries.ParameterEntry (None,instance,None), Decl_kinds.IsAssumption Decl_kinds.Logical)
      in
	add_instance (Typeclasses.new_instance (Lazy.force proper_class) None glob (ConstRef cst));
	declare_projection n instance_id (ConstRef cst)
    else
      let kind = Decl_kinds.Global, Decl_kinds.DefinitionBody Decl_kinds.Instance in
      let tac = make_tactic "Coq.Classes.SetoidTactics.add_morphism_tactic" in
	Flags.silently
	  (fun () ->
	    Lemmas.start_proof instance_id kind instance
	      (fun _ -> function
		Globnames.ConstRef cst ->
		  add_instance (Typeclasses.new_instance (Lazy.force proper_class) None
				   glob (ConstRef cst));
		  declare_projection n instance_id (ConstRef cst)
		| _ -> assert false);
	    ignore (Pfedit.by (Tacinterp.interp tac))) ()

let add_morphism glob binders m s n =
  init_setoid ();
  let instance_id = add_suffix n "_Proper" in
  let instance =
    ((Loc.ghost,Name instance_id), Explicit,
    CAppExpl (Loc.ghost,
	     (None, Qualid (Loc.ghost, Libnames.qualid_of_string "Coq.Classes.Morphisms.Proper")),
	     [cHole; s; m]))
  in
  let tac = Tacinterp.interp (make_tactic "add_morphism_tactic") in
    ignore(new_instance ~global:glob binders instance (Some (CRecord (Loc.ghost,None,[])))
	      ~generalize:false ~tac ~hook:(declare_projection n instance_id) None)

(** Bind to "rewrite" too *)

(** Taken from original setoid_replace, to emulate the old rewrite semantics where
    lemmas are first instantiated and then rewrite proceeds. *)

let check_evar_map_of_evars_defs evd =
 let metas = Evd.meta_list evd in
 let check_freemetas_is_empty rebus =
  Evd.Metaset.iter
   (fun m ->
     if Evd.meta_defined evd m then () else
      raise
	(Logic.RefinerError (Logic.UnresolvedBindings [Evd.meta_name evd m])))
 in
  List.iter
   (fun (_,binding) ->
     match binding with
        Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) ->
         check_freemetas_is_empty rebus freemetas
      | Evd.Clval (_,({Evd.rebus=rebus1; Evd.freemetas=freemetas1},_),
                 {Evd.rebus=rebus2; Evd.freemetas=freemetas2}) ->
         check_freemetas_is_empty rebus1 freemetas1 ;
         check_freemetas_is_empty rebus2 freemetas2
   ) metas

let unification_rewrite l2r c1 c2 cl car rel but env =
  let (evd',c') =
    try
      (* ~flags:(false,true) to allow to mark occurrences that must not be
         rewritten simply by replacing them with let-defined definitions
         in the context *)
      Unification.w_unify_to_subterm
       ~flags:{ rewrite_unif_flags with Unification.resolve_evars = true } env
        cl.evd ((if l2r then c1 else c2),but)
    with
	Pretype_errors.PretypeError _ ->
	  (* ~flags:(true,true) to make Ring work (since it really
             exploits conversion) *)
	  Unification.w_unify_to_subterm
	  ~flags:{ rewrite2_unif_flags with Unification.resolve_evars = true }
	    env cl.evd ((if l2r then c1 else c2),but)
  in
  let cl' = {cl with evd = evd'} in
  let cl' = Clenvtac.clenv_pose_dependent_evars true cl' in
  let nf c = Evarutil.nf_evar cl'.evd (Clenv.clenv_nf_meta cl' c) in
  let c1 = if l2r then nf c' else nf c1
  and c2 = if l2r then nf c2 else nf c'
  and car = nf car and rel = nf rel in
  check_evar_map_of_evars_defs cl'.evd;
  let prf = nf (Clenv.clenv_value cl') and prfty = nf (Clenv.clenv_type cl') in
  let cl' = { cl' with templval = mk_freelisted prf ; templtyp = mk_freelisted prfty } in
  let abs = (prf, prfty) in
  abs, {cl=cl'; ext=Evar.Set.empty; prf=(mkRel 1); car=car; rel=rel;
     c1=c1; c2=c2; c=None; abs=true; }

let get_hyp gl evars (c,l) clause l2r =
  let env = pf_env gl in
  let hi = decompose_applied_relation env evars None (c,l) in
  let but = match clause with
    | Some id -> pf_get_hyp_typ gl id
    | None -> Evarutil.nf_evar evars (pf_concl gl)
  in
  unification_rewrite l2r hi.c1 hi.c2 hi.cl hi.car hi.rel but env

let general_rewrite_flags = { under_lambdas = false; on_morphisms = true }

let general_s_rewrite cl l2r occs (c,l) ~new_goals gl =
  let app = apply_rule l2r rewrite_unif_flags None occs in
  let recstrat aux = Strategies.choice app (subterm true general_rewrite_flags aux) in
  let substrat = Strategies.fix recstrat in
  let abs, hypinfo = get_hyp gl (project gl) (c,l) cl l2r in
  let strat () env avoid t ty cstr evars =
    let _, res = substrat (hypinfo, 0) env avoid t ty cstr evars in
    (), res
  in
    try
      (tclWEAK_PROGRESS
	(tclTHEN
           (Refiner.tclEVARS hypinfo.cl.evd)
	   (cl_rewrite_clause_tac ~abs:(Some abs) strat cl))) gl
    with RewriteFailure e ->
      let {c1=x; c2=y} = hypinfo in
	raise (Pretype_errors.PretypeError
		  (pf_env gl,project gl,
		  Pretype_errors.NoOccurrenceFound ((if l2r then x else y), cl)))

open Proofview.Notations

let general_s_rewrite_clause x =
  match x with
    | None -> general_s_rewrite None
    | Some id -> general_s_rewrite (Some id)
let general_s_rewrite_clause x y z w ~new_goals =
  newtactic_init_setoid () <*>
  Proofview.V82.tactic (general_s_rewrite_clause x y z w ~new_goals)

let _ = Hook.set Equality.general_rewrite_clause general_s_rewrite_clause

(** [setoid_]{reflexivity,symmetry,transitivity} tactics *)

let not_declared env ty rel =
  Tacticals.New.tclFAIL 0 (str" The relation " ++ Printer.pr_constr_env env rel ++ str" is not a declared " ++
		str ty ++ str" relation. Maybe you need to require the Setoid library")

let setoid_proof ty fn fallback =
  Proofview.Goal.enter begin fun gl ->
    let sigma = Proofview.Goal.sigma gl in
    let env = Proofview.Goal.env gl in
    let concl = Proofview.Goal.concl gl in
    Proofview.tclORELSE
      begin
        try
          let rel, args = decompose_app_rel env sigma concl in
          let evm = sigma in
          let car = pi3 (List.hd (fst (Reduction.dest_prod env (Typing.type_of env evm rel)))) in
          fn env evm car rel
        with e -> Proofview.tclZERO e
      end
      begin function
        | e ->
            Proofview.tclORELSE
              fallback
              begin function
                | Hipattern.NoEquationFound ->
                (* spiwack: [Errors.push] here is unlikely to do what
                   it's intended to, or anything meaningful for that
                   matter. *)
                    let e = Errors.push e in
	            begin match e with
	            | Not_found ->
	                let rel, args = decompose_app_rel env sigma concl in
		        not_declared env ty rel
	            | _ -> Proofview.tclZERO e
                    end
                | e' -> Proofview.tclZERO e'
              end
      end
  end

let setoid_reflexivity =
  setoid_proof "reflexive"
    (fun env evm car rel -> Proofview.V82.tactic (apply (get_reflexive_proof env evm car rel)))
    (reflexivity_red true)

let setoid_symmetry =
  setoid_proof "symmetric"
    (fun env evm car rel -> Proofview.V82.tactic (apply (get_symmetric_proof env evm car rel)))
    (symmetry_red true)

let setoid_transitivity c =
  setoid_proof "transitive"
    (fun env evm car rel ->
      Proofview.V82.tactic begin
        let proof = get_transitive_proof env evm car rel in
        match c with
        | None -> eapply proof
        | Some c -> apply_with_bindings (proof,ImplicitBindings [ c ])
      end)
    (transitivity_red true c)

let setoid_symmetry_in id =
  Proofview.Goal.enter begin fun gl ->
  let ctype = Tacmach.New.of_old (fun gl -> pf_type_of gl (mkVar id)) gl in
  let binders,concl = decompose_prod_assum ctype in
  let (equiv, args) = decompose_app concl in
  let rec split_last_two = function
    | [c1;c2] -> [],(c1, c2)
    | x::y::z -> let l,res = split_last_two (y::z) in x::l, res
    | _ -> error "The term provided is not an equivalence."
  in
  let others,(c1,c2) = split_last_two args in
  let he,c1,c2 =  mkApp (equiv, Array.of_list others),c1,c2 in
  let new_hyp' =  mkApp (he, [| c2 ; c1 |]) in
  let new_hyp = it_mkProd_or_LetIn new_hyp'  binders in
    Tacticals.New.tclTHENS (Tactics.cut new_hyp)
      [ Proofview.V82.tactic (intro_replacing id);
	Tacticals.New.tclTHENLIST [ intros; setoid_symmetry; Proofview.V82.tactic (apply (mkVar id)); Tactics.assumption ] ]
  end

let _ = Hook.set Tactics.setoid_reflexivity setoid_reflexivity
let _ = Hook.set Tactics.setoid_symmetry setoid_symmetry
let _ = Hook.set Tactics.setoid_symmetry_in setoid_symmetry_in
let _ = Hook.set Tactics.setoid_transitivity setoid_transitivity