1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
|
(* -*- compile-command: "make -C .. bin/coqtop.byte" -*- *)
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(* $Id: rewrite.ml4 11981 2009-03-16 08:18:53Z herbelin $ *)
open Pp
open Util
open Names
open Nameops
open Term
open Termops
open Sign
open Reduction
open Proof_type
open Proof_trees
open Declarations
open Tacticals
open Tacmach
open Evar_refiner
open Tactics
open Pattern
open Clenv
open Auto
open Rawterm
open Hiddentac
open Typeclasses
open Typeclasses_errors
open Classes
open Topconstr
open Pfedit
open Command
open Libnames
open Evd
(** Typeclass-based generalized rewriting. *)
let check_required_library d =
let d' = List.map id_of_string d in
let dir = make_dirpath (List.rev d') in
if not (Library.library_is_loaded dir) then
error ("Library "^(list_last d)^" has to be required first.")
let classes_dirpath =
make_dirpath (List.map id_of_string ["Classes";"Coq"])
let init_setoid () =
if is_dirpath_prefix_of classes_dirpath (Lib.cwd ()) then ()
else check_required_library ["Coq";"Setoids";"Setoid"]
let proper_class =
lazy (class_info (Nametab.global (Qualid (dummy_loc, qualid_of_string "Coq.Classes.Morphisms.Proper"))))
let proper_proxy_class =
lazy (class_info (Nametab.global (Qualid (dummy_loc, qualid_of_string "Coq.Classes.Morphisms.ProperProxy"))))
let proper_proj = lazy (mkConst (Option.get (snd (List.hd (Lazy.force proper_class).cl_projs))))
let make_dir l = make_dirpath (List.map id_of_string (List.rev l))
let try_find_global_reference dir s =
let sp = Libnames.make_path (make_dir ("Coq"::dir)) (id_of_string s) in
Nametab.global_of_path sp
let try_find_reference dir s =
constr_of_global (try_find_global_reference dir s)
let gen_constant dir s = Coqlib.gen_constant "rewrite" dir s
let coq_proj1 = lazy(gen_constant ["Init"; "Logic"] "proj1")
let coq_proj2 = lazy(gen_constant ["Init"; "Logic"] "proj2")
let coq_eq = lazy(gen_constant ["Init"; "Logic"] "eq")
let coq_eq_rect = lazy (gen_constant ["Init"; "Logic"] "eq_rect")
let coq_f_equal = lazy (gen_constant ["Init"; "Logic"] "f_equal")
let iff = lazy (gen_constant ["Init"; "Logic"] "iff")
let coq_all = lazy (gen_constant ["Init"; "Logic"] "all")
let impl = lazy (gen_constant ["Program"; "Basics"] "impl")
let arrow = lazy (gen_constant ["Program"; "Basics"] "arrow")
let coq_id = lazy (gen_constant ["Init"; "Datatypes"] "id")
let reflexive_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Reflexive")
let reflexive_proof_global = lazy (try_find_global_reference ["Classes"; "RelationClasses"] "reflexivity")
let reflexive_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "reflexivity")
let symmetric_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Symmetric")
let symmetric_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "symmetry")
let symmetric_proof_global = lazy (try_find_global_reference ["Classes"; "RelationClasses"] "symmetry")
let transitive_type = lazy (try_find_reference ["Classes"; "RelationClasses"] "Transitive")
let transitive_proof = lazy (try_find_reference ["Classes"; "RelationClasses"] "transitivity")
let transitive_proof_global = lazy (try_find_global_reference ["Classes"; "RelationClasses"] "transitivity")
let coq_inverse = lazy (gen_constant (* ["Classes"; "RelationClasses"] "inverse" *)
["Program"; "Basics"] "flip")
let inverse car rel = mkApp (Lazy.force coq_inverse, [| car ; car; mkProp; rel |])
(* let inverse car rel = mkApp (Lazy.force coq_inverse, [| car ; car; new_Type (); rel |]) *)
let complement = lazy (gen_constant ["Classes"; "RelationClasses"] "complement")
let forall_relation = lazy (gen_constant ["Classes"; "Morphisms"] "forall_relation")
let pointwise_relation = lazy (gen_constant ["Classes"; "Morphisms"] "pointwise_relation")
let respectful_dep = lazy (gen_constant ["Classes"; "Morphisms"] "respectful_dep")
let respectful = lazy (gen_constant ["Classes"; "Morphisms"] "respectful")
let equivalence = lazy (gen_constant ["Classes"; "RelationClasses"] "Equivalence")
let default_relation = lazy (gen_constant ["Classes"; "SetoidTactics"] "DefaultRelation")
let subrelation = lazy (gen_constant ["Classes"; "RelationClasses"] "subrelation")
let is_subrelation = lazy (gen_constant ["Classes"; "RelationClasses"] "is_subrelation")
let do_subrelation = lazy (gen_constant ["Classes"; "Morphisms"] "do_subrelation")
let apply_subrelation = lazy (gen_constant ["Classes"; "Morphisms"] "apply_subrelation")
let coq_relation = lazy (gen_constant ["Relations";"Relation_Definitions"] "relation")
let mk_relation a = mkApp (Lazy.force coq_relation, [| a |])
(* let mk_relation a = mkProd (Anonymous, a, mkProd (Anonymous, a, new_Type ())) *)
let coq_relationT = lazy (gen_constant ["Classes";"Relations"] "relationT")
let setoid_refl_proj = lazy (gen_constant ["Classes"; "SetoidClass"] "Equivalence_Reflexive")
let setoid_equiv = lazy (gen_constant ["Classes"; "SetoidClass"] "equiv")
let setoid_proper = lazy (gen_constant ["Classes"; "SetoidClass"] "setoid_proper")
let setoid_refl_proj = lazy (gen_constant ["Classes"; "SetoidClass"] "Equivalence_Reflexive")
let rewrite_relation_class = lazy (gen_constant ["Classes"; "RelationClasses"] "RewriteRelation")
let rewrite_relation = lazy (gen_constant ["Classes"; "RelationClasses"] "rewrite_relation")
let arrow_morphism a b =
if isprop a && isprop b then
Lazy.force impl
else
mkApp(Lazy.force arrow, [|a;b|])
let setoid_refl pars x =
applistc (Lazy.force setoid_refl_proj) (pars @ [x])
let proper_type = lazy (constr_of_global (Lazy.force proper_class).cl_impl)
let proper_proxy_type = lazy (constr_of_global (Lazy.force proper_proxy_class).cl_impl)
let is_applied_rewrite_relation env sigma rels t =
match kind_of_term t with
| App (c, args) when Array.length args >= 2 ->
let head = if isApp c then fst (destApp c) else c in
if eq_constr (Lazy.force coq_eq) head then None
else
(try
let params, args = array_chop (Array.length args - 2) args in
let env' = Environ.push_rel_context rels env in
let evd, evar = Evarutil.new_evar sigma env' (new_Type ()) in
let inst = mkApp (Lazy.force rewrite_relation_class, [| evar; mkApp (c, params) |]) in
let _ = Typeclasses.resolve_one_typeclass env' evd inst in
Some (sigma, it_mkProd_or_LetIn t rels)
with _ -> None)
| _ -> None
let _ =
Equality.register_is_applied_rewrite_relation is_applied_rewrite_relation
let split_head = function
hd :: tl -> hd, tl
| [] -> assert(false)
let new_goal_evar (goal,cstr) env t =
let goal', t = Evarutil.new_evar goal env t in
(goal', cstr), t
let new_cstr_evar (goal,cstr) env t =
let cstr', t = Evarutil.new_evar cstr env t in
(goal, cstr'), t
let build_signature evars env m (cstrs : 'a option list) (finalcstr : 'a option) (f : 'a -> constr) =
let new_evar evars env t =
new_cstr_evar evars env
(* ~src:(dummy_loc, ImplicitArg (ConstRef (Lazy.force respectful), (n, Some na))) *) t
in
let mk_relty evars env ty obj =
match obj with
| None ->
let relty = mk_relation ty in
new_evar evars env relty
| Some x -> evars, f x
in
let rec aux env evars ty l =
let t = Reductionops.whd_betadeltaiota env (fst evars) ty in
match kind_of_term t, l with
| Prod (na, ty, b), obj :: cstrs ->
if dependent (mkRel 1) b then
let (evars, b, arg, cstrs) = aux (Environ.push_rel (na, None, ty) env) evars b cstrs in
let ty = Reductionops.nf_betaiota (fst evars) ty in
let pred = mkLambda (na, ty, b) in
let liftarg = mkLambda (na, ty, arg) in
let arg' = mkApp (Lazy.force forall_relation, [| ty ; pred ; liftarg |]) in
if obj = None then evars, mkProd(na, ty, b), arg', (ty, None) :: cstrs
else error "build_signature: no constraint can apply on a dependent argument"
else
let (evars, b', arg, cstrs) = aux env evars (subst1 mkProp b) cstrs in
let ty = Reductionops.nf_betaiota (fst evars) ty in
let evars, relty = mk_relty evars env ty obj in
let newarg = mkApp (Lazy.force respectful, [| ty ; b' ; relty ; arg |]) in
evars, mkProd(na, ty, b), newarg, (ty, Some relty) :: cstrs
| _, obj :: _ -> anomaly "build_signature: not enough products"
| _, [] ->
(match finalcstr with
| None ->
let t = Reductionops.nf_betaiota (fst evars) ty in
let evars, rel = mk_relty evars env t None in
evars, t, rel, [t, Some rel]
| Some codom -> let (t, rel) = codom in
evars, t, rel, [t, Some rel])
in aux env evars m cstrs
let proper_proof env evars carrier relation x =
let goal = mkApp (Lazy.force proper_proxy_type, [| carrier ; relation; x |])
in new_cstr_evar evars env goal
let find_class_proof proof_type proof_method env evars carrier relation =
try
let goal = mkApp (Lazy.force proof_type, [| carrier ; relation |]) in
let evars, c = Typeclasses.resolve_one_typeclass env evars goal in
mkApp (Lazy.force proof_method, [| carrier; relation; c |])
with e when Logic.catchable_exception e -> raise Not_found
let get_reflexive_proof env = find_class_proof reflexive_type reflexive_proof env
let get_symmetric_proof env = find_class_proof symmetric_type symmetric_proof env
let get_transitive_proof env = find_class_proof transitive_type transitive_proof env
exception FoundInt of int
let array_find (arr: 'a array) (pred: int -> 'a -> bool): int =
try
for i=0 to Array.length arr - 1 do if pred i (arr.(i)) then raise (FoundInt i) done;
raise Not_found
with FoundInt i -> i
type hypinfo = {
cl : clausenv;
prf : constr;
car : constr;
rel : constr;
l2r : bool;
c1 : constr;
c2 : constr;
c : constr option;
abs : (constr * types) option;
}
let evd_convertible env evd x y =
try ignore(Evarconv.the_conv_x env x y evd); true
with _ -> false
let decompose_applied_relation env sigma c left2right =
let ctype = Typing.type_of env sigma c in
let find_rel ty =
let eqclause = Clenv.mk_clenv_from_env env sigma None (c,ty) in
let (equiv, args) = decompose_app (Clenv.clenv_type eqclause) in
let rec split_last_two = function
| [c1;c2] -> [],(c1, c2)
| x::y::z ->
let l,res = split_last_two (y::z) in x::l, res
| _ -> error "The term provided is not an applied relation." in
let others,(c1,c2) = split_last_two args in
let ty1, ty2 =
Typing.mtype_of env eqclause.evd c1, Typing.mtype_of env eqclause.evd c2
in
if not (evd_convertible env eqclause.evd ty1 ty2) then None
else
Some { cl=eqclause; prf=(Clenv.clenv_value eqclause);
car=ty1; rel=mkApp (equiv, Array.of_list others);
l2r=left2right; c1=c1; c2=c2; c=Some c; abs=None }
in
match find_rel ctype with
| Some c -> c
| None ->
let ctx,t' = Reductionops.splay_prod_assum env sigma ctype in (* Search for underlying eq *)
match find_rel (it_mkProd_or_LetIn t' ctx) with
| Some c -> c
| None -> error "The term does not end with an applied homogeneous relation."
let rewrite_unif_flags = {
Unification.modulo_conv_on_closed_terms = None;
Unification.use_metas_eagerly = true;
Unification.modulo_delta = empty_transparent_state;
Unification.resolve_evars = true;
Unification.use_evars_pattern_unification = true;
}
let conv_transparent_state = (Idpred.empty, Cpred.full)
let rewrite2_unif_flags = {
Unification.modulo_conv_on_closed_terms = Some conv_transparent_state;
Unification.use_metas_eagerly = true;
Unification.modulo_delta = empty_transparent_state;
Unification.resolve_evars = true;
Unification.use_evars_pattern_unification = true;
}
let setoid_rewrite_unif_flags = {
Unification.modulo_conv_on_closed_terms = Some conv_transparent_state;
Unification.use_metas_eagerly = true;
Unification.modulo_delta = conv_transparent_state;
Unification.resolve_evars = true;
Unification.use_evars_pattern_unification = true;
}
let convertible env evd x y =
Reductionops.is_conv env evd x y
let allowK = true
let refresh_hypinfo env sigma hypinfo =
if hypinfo.abs = None then
let {l2r=l2r; c=c;cl=cl} = hypinfo in
match c with
| Some c ->
(* Refresh the clausenv to not get the same meta twice in the goal. *)
decompose_applied_relation env cl.evd c l2r;
| _ -> hypinfo
else hypinfo
let unify_eqn env sigma hypinfo t =
if isEvar t then None
else try
let {cl=cl; prf=prf; car=car; rel=rel; l2r=l2r; c1=c1; c2=c2; c=c; abs=abs} = !hypinfo in
let left = if l2r then c1 else c2 in
let env', prf, c1, c2, car, rel =
match abs with
| Some (absprf, absprfty) ->
let env' = clenv_unify allowK ~flags:rewrite2_unif_flags CONV left t cl in
env', prf, c1, c2, car, rel
| None ->
let env' =
try clenv_unify allowK ~flags:rewrite_unif_flags CONV left t cl
with Pretype_errors.PretypeError _ ->
(* For Ring essentially, only when doing setoid_rewrite *)
clenv_unify allowK ~flags:rewrite2_unif_flags CONV left t cl
in
let env' =
let mvs = clenv_dependent false env' in
clenv_pose_metas_as_evars env' mvs
in
let evd' = Typeclasses.resolve_typeclasses ~fail:true env'.env env'.evd in
let env' = { env' with evd = evd' } in
let nf c = Evarutil.nf_evar evd' (Clenv.clenv_nf_meta env' c) in
let c1 = nf c1 and c2 = nf c2
and car = nf car and rel = nf rel
and prf = nf (Clenv.clenv_value env') in
let ty1 = Typing.mtype_of env'.env env'.evd c1
and ty2 = Typing.mtype_of env'.env env'.evd c2
in
if convertible env env'.evd ty1 ty2 then (
if occur_meta prf then
hypinfo := refresh_hypinfo env sigma !hypinfo;
env', prf, c1, c2, car, rel)
else raise Reduction.NotConvertible
in
let res =
if l2r then (prf, (car, rel, c1, c2))
else
try (mkApp (get_symmetric_proof env Evd.empty car rel,
[| c1 ; c2 ; prf |]),
(car, rel, c2, c1))
with Not_found ->
(prf, (car, inverse car rel, c2, c1))
in Some (env', res)
with e when Class_tactics.catchable e -> None
let unfold_impl t =
match kind_of_term t with
| App (arrow, [| a; b |])(* when eq_constr arrow (Lazy.force impl) *) ->
mkProd (Anonymous, a, lift 1 b)
| _ -> assert false
let unfold_id t =
match kind_of_term t with
| App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_id) *) -> b
| _ -> assert false
let unfold_all t =
match kind_of_term t with
| App (id, [| a; b |]) (* when eq_constr id (Lazy.force coq_all) *) ->
(match kind_of_term b with
| Lambda (n, ty, b) -> mkProd (n, ty, b)
| _ -> assert false)
| _ -> assert false
let decomp_prod env evm n c =
snd (Reductionops.splay_prod_n env evm n c)
let rec decomp_pointwise n c =
if n = 0 then c
else
match kind_of_term c with
| App (pointwise, [| a; b; relb |]) -> decomp_pointwise (pred n) relb
| _ -> raise Not_found
let lift_cstr env sigma evars args cstr =
let cstr =
let start =
match cstr with
| Some codom -> codom
| None ->
let car = Evarutil.e_new_evar evars env (new_Type ()) in
let rel = Evarutil.e_new_evar evars env (mk_relation car) in
(car, rel)
in
Array.fold_right
(fun arg (car, rel) ->
let ty = Typing.type_of env sigma arg in
let car' = mkProd (Anonymous, ty, car) in
let rel' = mkApp (Lazy.force pointwise_relation, [| ty; car; rel |]) in
(car', rel'))
args start
in Some cstr
let unlift_cstr env sigma = function
| None -> None
| Some codom -> Some (decomp_pointwise 1 codom)
type rewrite_flags = { under_lambdas : bool; on_morphisms : bool }
let default_flags = { under_lambdas = true; on_morphisms = true; }
type evars = evar_defs * evar_defs (* goal evars, constraint evars *)
type rewrite_result_info = {
rew_car : constr;
rew_rel : constr;
rew_from : constr;
rew_to : constr;
rew_prf : constr;
rew_evars : evars;
}
type rewrite_result = rewrite_result_info option
type strategy = Environ.env -> evar_defs -> constr -> types ->
constr option -> evars -> rewrite_result option
let resolve_subrelation env sigma car rel rel' res =
if eq_constr rel rel' then res
else
(* try let evd' = Evarconv.the_conv_x env rel rel' res.rew_evars in *)
(* { res with rew_evars = evd' } *)
(* with NotConvertible -> *)
let app = mkApp (Lazy.force subrelation, [|car; rel; rel'|]) in
let evars, subrel = new_cstr_evar res.rew_evars env app in
{ res with
rew_prf = mkApp (subrel, [| res.rew_from ; res.rew_to ; res.rew_prf |]);
rew_rel = rel';
rew_evars = evars }
let resolve_morphism env sigma oldt m ?(fnewt=fun x -> x) args args' cstr evars =
let evars, morph_instance, proj, sigargs, m', args, args' =
let first = try (array_find args' (fun i b -> b <> None)) with Not_found -> raise (Invalid_argument "resolve_morphism") in
let morphargs, morphobjs = array_chop first args in
let morphargs', morphobjs' = array_chop first args' in
let appm = mkApp(m, morphargs) in
let appmtype = Typing.type_of env sigma appm in
let cstrs = List.map (Option.map (fun r -> r.rew_car, r.rew_rel)) (Array.to_list morphobjs') in
(* Desired signature *)
let evars, appmtype', signature, sigargs = build_signature evars env appmtype cstrs cstr (fun (a,r) -> r) in
(* Actual signature found *)
let cl_args = [| appmtype' ; signature ; appm |] in
let app = mkApp (Lazy.force proper_type, cl_args) in
let env' = Environ.push_named
(id_of_string "do_subrelation", Some (Lazy.force do_subrelation), Lazy.force apply_subrelation)
env
in
let evars, morph = new_cstr_evar evars env' app in
evars, morph, morph, sigargs, appm, morphobjs, morphobjs'
in
let projargs, subst, evars, respars, typeargs =
array_fold_left2
(fun (acc, subst, evars, sigargs, typeargs') x y ->
let (carrier, relation), sigargs = split_head sigargs in
match relation with
| Some relation ->
let carrier = substl subst carrier
and relation = substl subst relation in
(match y with
| None ->
let evars, proof = proper_proof env evars carrier relation x in
[ proof ; x ; x ] @ acc, subst, evars, sigargs, x :: typeargs'
| Some r ->
[ r.rew_prf; r.rew_to; x ] @ acc, subst, evars, sigargs, r.rew_to :: typeargs')
| None ->
if y <> None then error "Cannot rewrite the argument of a dependent function";
x :: acc, x :: subst, evars, sigargs, x :: typeargs')
([], [], evars, sigargs, []) args args'
in
let proof = applistc proj (List.rev projargs) in
let newt = applistc m' (List.rev typeargs) in
match respars with
[ a, Some r ] -> evars, proof, a, r, oldt, fnewt newt
| _ -> assert(false)
let apply_constraint env sigma car rel cstr res =
match cstr with
| None -> res
| Some r -> resolve_subrelation env sigma car rel r res
let eq_env x y = x == y
let apply_rule hypinfo loccs : strategy =
let (nowhere_except_in,occs) = loccs in
let is_occ occ =
if nowhere_except_in then List.mem occ occs else not (List.mem occ occs) in
let occ = ref 0 in
fun env sigma t ty cstr evars ->
if not (eq_env !hypinfo.cl.env env) then hypinfo := refresh_hypinfo env sigma !hypinfo;
let unif = unify_eqn env sigma hypinfo t in
if unif <> None then incr occ;
match unif with
| Some (env', (prf, (car, rel, c1, c2))) when is_occ !occ ->
begin
let goalevars = Evd.evar_merge (fst evars)
(Evd.undefined_evars (Evarutil.nf_evar_defs env'.evd))
in
let res = { rew_car = ty; rew_rel = rel; rew_from = c1;
rew_to = c2; rew_prf = prf; rew_evars = goalevars, snd evars }
in Some (Some (apply_constraint env sigma car rel cstr res))
end
| _ -> None
let apply_lemma (evm,c) left2right loccs : strategy =
fun env sigma ->
let evars = Evd.merge sigma evm in
let hypinfo = ref (decompose_applied_relation env evars c left2right) in
apply_rule hypinfo loccs env sigma
let make_leibniz_proof c ty r =
let prf = mkApp (Lazy.force coq_f_equal,
[| r.rew_car; ty;
mkLambda (Anonymous, r.rew_car, c (mkRel 1));
r.rew_from; r.rew_to; r.rew_prf |])
in
{ r with rew_car = ty; rew_rel = mkApp (Lazy.force coq_eq, [| ty |]);
rew_from = c r.rew_from; rew_to = c r.rew_to; rew_prf = prf }
let subterm all flags (s : strategy) : strategy =
let rec aux env sigma t ty cstr evars =
let cstr' = Option.map (fun c -> (ty, c)) cstr in
match kind_of_term t with
| App (m, args) ->
let rewrite_args success =
let args', evars', progress =
Array.fold_left
(fun (acc, evars, progress) arg ->
if progress <> None && not all then (None :: acc, evars, progress)
else
let res = s env sigma arg (Typing.type_of env sigma arg) None evars in
match res with
| Some None -> (None :: acc, evars, if progress = None then Some false else progress)
| Some (Some r) -> (Some r :: acc, r.rew_evars, Some true)
| None -> (None :: acc, evars, progress))
([], evars, success) args
in
match progress with
| None -> None
| Some false -> Some None
| Some true ->
let args' = Array.of_list (List.rev args') in
let evars', prf, car, rel, c1, c2 = resolve_morphism env sigma t m args args' cstr' evars' in
let res = { rew_car = ty; rew_rel = rel; rew_from = c1;
rew_to = c2; rew_prf = prf; rew_evars = evars' } in
Some (Some res)
in
if flags.on_morphisms then
let evarsref = ref (snd evars) in
let cstr' = lift_cstr env sigma evarsref args cstr' in
let m' = s env sigma m (Typing.type_of env sigma m)
(Option.map snd cstr') (fst evars, !evarsref)
in
match m' with
| None -> rewrite_args None (* Standard path, try rewrite on arguments *)
| Some None -> rewrite_args (Some false)
| Some (Some r) ->
(* We rewrote the function and get a proof of pointwise rel for the arguments.
We just apply it. *)
let nargs = Array.length args in
let res =
{ rew_car = decomp_prod env (fst r.rew_evars) nargs r.rew_car;
rew_rel = decomp_pointwise nargs r.rew_rel;
rew_from = mkApp(r.rew_from, args); rew_to = mkApp(r.rew_to, args);
rew_prf = mkApp (r.rew_prf, args); rew_evars = r.rew_evars }
in Some (Some res)
else rewrite_args None
| Prod (n, x, b) when not (dependent (mkRel 1) b) ->
let b = subst1 mkProp b in
let tx = Typing.type_of env sigma x and tb = Typing.type_of env sigma b in
let res = aux env sigma (mkApp (arrow_morphism tx tb, [| x; b |])) ty cstr evars in
(match res with
| Some (Some r) -> Some (Some { r with rew_to = unfold_impl r.rew_to })
| _ -> res)
(* if x' = None && flags.under_lambdas then *)
(* let lam = mkLambda (n, x, b) in *)
(* let lam', occ = aux env lam occ None in *)
(* let res = *)
(* match lam' with *)
(* | None -> None *)
(* | Some (prf, (car, rel, c1, c2)) -> *)
(* Some (resolve_morphism env sigma t *)
(* ~fnewt:unfold_all *)
(* (Lazy.force coq_all) [| x ; lam |] [| None; lam' |] *)
(* cstr evars) *)
(* in res, occ *)
(* else *)
| Prod (n, dom, codom) when eq_constr ty mkProp ->
let lam = mkLambda (n, dom, codom) in
let res = aux env sigma (mkApp (Lazy.force coq_all, [| dom; lam |])) ty cstr evars in
(match res with
| Some (Some r) -> Some (Some { r with rew_to = unfold_all r.rew_to })
| _ -> res)
| Lambda (n, t, b) when flags.under_lambdas ->
let env' = Environ.push_rel (n, None, t) env in
let b' = s env' sigma b (Typing.type_of env' sigma b) (unlift_cstr env sigma cstr) evars in
(match b' with
| Some (Some r) ->
Some (Some { r with
rew_prf = mkLambda (n, t, r.rew_prf);
rew_car = mkProd (n, t, r.rew_car);
rew_rel = mkApp (Lazy.force pointwise_relation, [| t; r.rew_car; r.rew_rel |]);
rew_from = mkLambda(n, t, r.rew_from);
rew_to = mkLambda (n, t, r.rew_to) })
| _ -> b')
| Case (ci, p, c, brs) ->
let cty = Typing.type_of env sigma c in
let cstr = Some (mkApp (Lazy.force coq_eq, [| cty |])) in
let c' = s env sigma c cty cstr evars in
(match c' with
| Some (Some r) ->
Some (Some (make_leibniz_proof (fun x -> mkCase (ci, p, x, brs)) ty r))
| x ->
if array_for_all ((=) 0) ci.ci_cstr_nargs then
let cstr = Some (mkApp (Lazy.force coq_eq, [| ty |])) in
let found, brs' = Array.fold_left (fun (found, acc) br ->
if found <> None then (found, fun x -> br :: acc x)
else
match s env sigma br ty cstr evars with
| Some (Some r) -> (Some r, fun x -> x :: acc x)
| _ -> (None, fun x -> br :: acc x))
(None, fun x -> []) brs
in
match found with
| Some r ->
let ctxc x = mkCase (ci, p, c, Array.of_list (List.rev (brs' x))) in
Some (Some (make_leibniz_proof ctxc ty r))
| None -> x
else x)
| _ -> if all then Some None else None
in aux
let all_subterms = subterm true default_flags
let one_subterm = subterm false default_flags
(** Requires transitivity of the rewrite step, not tail-recursive. *)
let transitivity env sigma (res : rewrite_result_info) (next : strategy) : rewrite_result option =
match next env sigma res.rew_to res.rew_car (Some res.rew_rel) res.rew_evars with
| None -> None
| Some None -> Some (Some res)
| Some (Some res') ->
let prfty = mkApp (Lazy.force transitive_type, [| res.rew_car ; res.rew_rel |]) in
let evars, prf = new_cstr_evar res'.rew_evars env prfty in
let prf = mkApp (prf, [|res.rew_from; res'.rew_from; res'.rew_to;
res.rew_prf; res'.rew_prf |])
in Some (Some { res' with rew_from = res.rew_from; rew_evars = evars; rew_prf = prf })
(** Rewriting strategies.
Inspired by ELAN's rewriting strategies:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.4049
*)
module Strategies =
struct
let fail : strategy =
fun env sigma t ty cstr evars -> None
let id : strategy =
fun env sigma t ty cstr evars -> Some None
let refl : strategy =
fun env sigma t ty cstr evars ->
let evars, rel = match cstr with
| None -> new_cstr_evar evars env (mk_relation ty)
| Some r -> evars, r
in
let evars, proof =
let mty = mkApp (Lazy.force proper_proxy_type, [| ty ; rel; t |]) in
new_cstr_evar evars env mty
in
Some (Some { rew_car = ty; rew_rel = rel; rew_from = t; rew_to = t;
rew_prf = proof; rew_evars = evars })
let progress (s : strategy) : strategy =
fun env sigma t ty cstr evars ->
match s env sigma t ty cstr evars with
| None -> None
| Some None -> None
| r -> r
let seq fst snd : strategy =
fun env sigma t ty cstr evars ->
match fst env sigma t ty cstr evars with
| None -> None
| Some None -> snd env sigma t ty cstr evars
| Some (Some res) -> transitivity env sigma res snd
let choice fst snd : strategy =
fun env sigma t ty cstr evars ->
match fst env sigma t ty cstr evars with
| None -> snd env sigma t ty cstr evars
| res -> res
let try_ str : strategy = choice str id
let fix (f : strategy -> strategy) : strategy =
let rec aux env = f (fun env -> aux env) env in aux
let any (s : strategy) : strategy =
fix (fun any -> try_ (seq s any))
let repeat (s : strategy) : strategy =
seq s (any s)
let bu (s : strategy) : strategy =
fix (fun s' -> seq (choice (all_subterms s') s) (try_ s'))
let td (s : strategy) : strategy =
fix (fun s' -> seq (choice s (all_subterms s')) (try_ s'))
let innermost (s : strategy) : strategy =
fix (fun ins -> choice (one_subterm ins) s)
let outermost (s : strategy) : strategy =
fix (fun out -> choice s (one_subterm out))
let lemmas cs : strategy =
List.fold_left (fun tac (l,l2r) ->
choice tac (apply_lemma l l2r (false,[])))
fail cs
let old_hints (db : string) : strategy =
let rules = Autorewrite.find_rewrites db in
lemmas (List.map (fun hint -> (inj_open hint.Autorewrite.rew_lemma, hint.Autorewrite.rew_l2r)) rules)
let hints (db : string) : strategy =
fun env sigma t ty cstr evars ->
let rules = Autorewrite.find_matches db t in
lemmas (List.map (fun hint -> (inj_open hint.Autorewrite.rew_lemma, hint.Autorewrite.rew_l2r)) rules)
env sigma t ty cstr evars
end
(** The strategy for a single rewrite, dealing with occurences. *)
let rewrite_strat flags occs hyp =
let app = apply_rule hyp occs in
let rec aux () =
Strategies.choice app (subterm true flags (fun env -> aux () env))
in aux ()
let rewrite_with (evm,c) left2right loccs : strategy =
fun env sigma ->
let evars = Evd.merge sigma evm in
let hypinfo = ref (decompose_applied_relation env evars c left2right) in
rewrite_strat default_flags loccs hypinfo env sigma
let apply_strategy (s : strategy) env sigma concl cstr evars =
let res =
s env sigma concl (Typing.type_of env sigma concl)
(Option.map snd cstr) !evars
in
match res with
| None -> None
| Some None -> Some None
| Some (Some res) ->
evars := res.rew_evars;
Some (Some (res.rew_prf, (res.rew_car, res.rew_rel, res.rew_from, res.rew_to)))
let split_evars_once sigma evd =
Evd.fold (fun ev evi deps ->
if Intset.mem ev deps then
Intset.union (Class_tactics.evars_of_evi evi) deps
else deps) evd sigma
let existentials_of_evd evd =
Evd.fold (fun ev evi acc -> Intset.add ev acc) evd Intset.empty
let evd_of_existentials evd exs =
Intset.fold (fun i acc ->
let evi = Evd.find evd i in
Evd.add acc i evi) exs Evd.empty
let split_evars sigma evd =
let rec aux deps =
let deps' = split_evars_once deps evd in
if Intset.equal deps' deps then
evd_of_existentials evd deps
else aux deps'
in aux (existentials_of_evd sigma)
let merge_evars (goal,cstr) = Evd.merge goal cstr
let solve_constraints env evars =
Typeclasses.resolve_typeclasses env ~split:false ~fail:true (merge_evars evars)
let cl_rewrite_clause_aux ?(abs=None) strat goal_meta clause gl =
let concl, is_hyp =
match clause with
Some id -> pf_get_hyp_typ gl id, Some id
| None -> pf_concl gl, None
in
let cstr =
let sort = mkProp in
let impl = Lazy.force impl in
match is_hyp with
| None -> (sort, inverse sort impl)
| Some _ -> (sort, impl)
in
let sigma = project gl in
let evars = ref (Evd.create_evar_defs sigma, Evd.empty) in
let env = pf_env gl in
let eq = apply_strategy strat env sigma concl (Some cstr) evars in
match eq with
| Some (Some (p, (_, _, oldt, newt))) ->
(try
let cstrevars = !evars in
let evars = solve_constraints env cstrevars in
let p = Evarutil.nf_isevar evars p in
let newt = Evarutil.nf_isevar evars newt in
let abs = Option.map (fun (x, y) ->
Evarutil.nf_isevar evars x, Evarutil.nf_isevar evars y) abs in
let undef = split_evars (fst cstrevars) evars in
let rewtac =
match is_hyp with
| Some id ->
let term =
match abs with
| None -> p
| Some (t, ty) ->
mkApp (mkLambda (Name (id_of_string "lemma"), ty, p), [| t |])
in
cut_replacing id newt
(fun x -> Tacmach.refine_no_check (mkApp (term, [| mkVar id |])))
| None ->
(match abs with
| None ->
let name = next_name_away_with_default "H" Anonymous (pf_ids_of_hyps gl) in
tclTHENLAST
(Tacmach.internal_cut_no_check false name newt)
(tclTHEN (Tactics.revert [name]) (Tacmach.refine_no_check p))
| Some (t, ty) ->
Tacmach.refine_no_check
(mkApp (mkLambda (Name (id_of_string "newt"), newt,
mkLambda (Name (id_of_string "lemma"), ty,
mkApp (p, [| mkRel 2 |]))),
[| mkMeta goal_meta; t |])))
in
let evartac =
if not (undef = Evd.empty) then
Refiner.tclEVARS undef
else tclIDTAC
in tclTHENLIST [evartac; rewtac] gl
with
| Stdpp.Exc_located (_, TypeClassError (env, (UnsatisfiableConstraints _ as e)))
| TypeClassError (env, (UnsatisfiableConstraints _ as e)) ->
Refiner.tclFAIL_lazy 0
(lazy (str"setoid rewrite failed: unable to satisfy the rewriting constraints."
++ fnl () ++ Himsg.explain_typeclass_error env e)) gl)
| Some None ->
tclFAIL 0 (str"setoid rewrite failed: no progress made") gl
| None -> raise Not_found
let cl_rewrite_clause_strat strat clause gl =
init_setoid ();
let meta = Evarutil.new_meta() in
let gl = { gl with sigma = Typeclasses.mark_unresolvables gl.sigma } in
try cl_rewrite_clause_aux strat meta clause gl
with Not_found ->
tclFAIL 0 (str"setoid rewrite failed: strategy failed") gl
let cl_rewrite_clause l left2right occs clause gl =
cl_rewrite_clause_strat (rewrite_with l left2right occs) clause gl
open Pp
open Pcoq
open Names
open Tacexpr
open Tacinterp
open Termops
open Genarg
open Extraargs
let occurrences_of = function
| n::_ as nl when n < 0 -> (false,List.map abs nl)
| nl ->
if List.exists (fun n -> n < 0) nl then
error "Illegal negative occurrence number.";
(true,nl)
let pr_gen_strategy pr_id = Pp.mt ()
let pr_loc_strategy _ _ _ = Pp.mt ()
let pr_strategy _ _ _ (s : strategy) = Pp.str "<strategy>"
let intern_strategy ist gl c = c
let interp_strategy ist gl c = c
let glob_strategy ist l = l
let subst_strategy evm l = l
let apply_constr_expr c l2r occs = fun env sigma ->
let c = Constrintern.interp_open_constr sigma env c in
apply_lemma c l2r occs env sigma
let interp_constr_list env sigma cs =
List.map (fun c -> Constrintern.interp_open_constr sigma env c, true) cs
open Pcoq
let (wit_strategy, globwit_strategy, rawwit_strategy) =
(Genarg.create_arg "strategy" :
((strategy, Genarg.tlevel) Genarg.abstract_argument_type *
(strategy, Genarg.glevel) Genarg.abstract_argument_type *
(strategy, Genarg.rlevel) Genarg.abstract_argument_type))
ARGUMENT EXTEND rewstrategy TYPED AS strategy
PRINTED BY pr_strategy
INTERPRETED BY interp_strategy
GLOBALIZED BY glob_strategy
SUBSTITUTED BY subst_strategy
[ constr(c) ] -> [ apply_constr_expr c true all_occurrences ]
| [ "<-" constr(c) ] -> [ apply_constr_expr c false all_occurrences ]
| [ "subterms" rewstrategy(h) ] -> [ all_subterms h ]
| [ "subterm" rewstrategy(h) ] -> [ one_subterm h ]
| [ "innermost" rewstrategy(h) ] -> [ Strategies.innermost h ]
| [ "outermost" rewstrategy(h) ] -> [ Strategies.outermost h ]
| [ "bottomup" rewstrategy(h) ] -> [ Strategies.bu h ]
| [ "topdown" rewstrategy(h) ] -> [ Strategies.td h ]
| [ "id" ] -> [ Strategies.id ]
| [ "refl" ] -> [ Strategies.refl ]
| [ "progress" rewstrategy(h) ] -> [ Strategies.progress h ]
| [ "fail" ] -> [ Strategies.fail ]
| [ "try" rewstrategy(h) ] -> [ Strategies.try_ h ]
| [ "any" rewstrategy(h) ] -> [ Strategies.any h ]
| [ "repeat" rewstrategy(h) ] -> [ Strategies.repeat h ]
| [ rewstrategy(h) ";" rewstrategy(h') ] -> [ Strategies.seq h h' ]
| [ "(" rewstrategy(h) ")" ] -> [ h ]
| [ "choice" rewstrategy(h) rewstrategy(h') ] -> [ Strategies.choice h h' ]
| [ "old_hints" preident(h) ] -> [ Strategies.old_hints h ]
| [ "hints" preident(h) ] -> [ Strategies.hints h ]
| [ "terms" constr_list(h) ] -> [ fun env sigma -> Strategies.lemmas (interp_constr_list env sigma h) env sigma ]
END
TACTIC EXTEND class_rewrite
| [ "clrewrite" orient(o) open_constr(c) "in" hyp(id) "at" occurrences(occ) ] -> [ cl_rewrite_clause c o (occurrences_of occ) (Some id) ]
| [ "clrewrite" orient(o) open_constr(c) "at" occurrences(occ) "in" hyp(id) ] -> [ cl_rewrite_clause c o (occurrences_of occ) (Some id) ]
| [ "clrewrite" orient(o) open_constr(c) "in" hyp(id) ] -> [ cl_rewrite_clause c o all_occurrences (Some id) ]
| [ "clrewrite" orient(o) open_constr(c) "at" occurrences(occ) ] -> [ cl_rewrite_clause c o (occurrences_of occ) None ]
| [ "clrewrite" orient(o) open_constr(c) ] -> [ cl_rewrite_clause c o all_occurrences None ]
END
TACTIC EXTEND class_rewrite_strat
| [ "clrewrite_strat" rewstrategy(s) ] -> [ cl_rewrite_clause_strat s None ]
(* | [ "clrewrite_strat" strategy(s) "in" hyp(id) ] -> [ cl_rewrite_clause_strat s (Some id) ] *)
END
let clsubstitute o c =
let is_tac id = match kind_of_term (snd c) with Var id' when id' = id -> true | _ -> false in
Tacticals.onAllHypsAndConcl
(fun cl ->
match cl with
| Some id when is_tac id -> tclIDTAC
| _ -> tclTRY (cl_rewrite_clause c o all_occurrences cl))
TACTIC EXTEND substitute
| [ "substitute" orient(o) open_constr(c) ] -> [ clsubstitute o c ]
END
(* Compatibility with old Setoids *)
TACTIC EXTEND setoid_rewrite
[ "setoid_rewrite" orient(o) open_constr(c) ]
-> [ cl_rewrite_clause c o all_occurrences None ]
| [ "setoid_rewrite" orient(o) open_constr(c) "in" hyp(id) ] ->
[ cl_rewrite_clause c o all_occurrences (Some id)]
| [ "setoid_rewrite" orient(o) open_constr(c) "at" occurrences(occ) ] ->
[ cl_rewrite_clause c o (occurrences_of occ) None]
| [ "setoid_rewrite" orient(o) open_constr(c) "at" occurrences(occ) "in" hyp(id)] ->
[ cl_rewrite_clause c o (occurrences_of occ) (Some id)]
| [ "setoid_rewrite" orient(o) open_constr(c) "in" hyp(id) "at" occurrences(occ)] ->
[ cl_rewrite_clause c o (occurrences_of occ) (Some id)]
END
(* let solve_obligation lemma = *)
(* tclTHEN (Tacinterp.interp (Tacexpr.TacAtom (dummy_loc, Tacexpr.TacAnyConstructor None))) *)
(* (eapply_with_bindings (Constrintern.interp_constr Evd.empty (Global.env()) lemma, NoBindings)) *)
let mkappc s l = CAppExpl (dummy_loc,(None,(Libnames.Ident (dummy_loc,id_of_string s))),l)
let declare_an_instance n s args =
((dummy_loc,Name n), Explicit,
CAppExpl (dummy_loc, (None, Qualid (dummy_loc, qualid_of_string s)),
args))
let declare_instance a aeq n s = declare_an_instance n s [a;aeq]
let anew_instance binders instance fields =
new_instance binders instance (CRecord (dummy_loc,None,fields)) ~generalize:false None
let require_library dirpath =
let qualid = (dummy_loc, Libnames.qualid_of_dirpath (Libnames.dirpath_of_string dirpath)) in
Library.require_library [qualid] (Some false)
let declare_instance_refl binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Reflexive") "Coq.Classes.RelationClasses.Reflexive"
in anew_instance binders instance
[((dummy_loc,id_of_string "reflexivity"),lemma)]
let declare_instance_sym binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Symmetric") "Coq.Classes.RelationClasses.Symmetric"
in anew_instance binders instance
[((dummy_loc,id_of_string "symmetry"),lemma)]
let declare_instance_trans binders a aeq n lemma =
let instance = declare_instance a aeq (add_suffix n "_Transitive") "Coq.Classes.RelationClasses.Transitive"
in anew_instance binders instance
[((dummy_loc,id_of_string "transitivity"),lemma)]
let constr_tac = Tacinterp.interp (Tacexpr.TacAtom (dummy_loc, Tacexpr.TacAnyConstructor (false,None)))
let declare_relation ?(binders=[]) a aeq n refl symm trans =
init_setoid ();
let instance = declare_instance a aeq (add_suffix n "_relation") "Coq.Classes.RelationClasses.RewriteRelation"
in ignore(anew_instance binders instance []);
match (refl,symm,trans) with
(None, None, None) -> ()
| (Some lemma1, None, None) ->
ignore (declare_instance_refl binders a aeq n lemma1)
| (None, Some lemma2, None) ->
ignore (declare_instance_sym binders a aeq n lemma2)
| (None, None, Some lemma3) ->
ignore (declare_instance_trans binders a aeq n lemma3)
| (Some lemma1, Some lemma2, None) ->
ignore (declare_instance_refl binders a aeq n lemma1);
ignore (declare_instance_sym binders a aeq n lemma2)
| (Some lemma1, None, Some lemma3) ->
let _lemma_refl = declare_instance_refl binders a aeq n lemma1 in
let _lemma_trans = declare_instance_trans binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PreOrder"
in ignore(
anew_instance binders instance
[((dummy_loc,id_of_string "PreOrder_Reflexive"), lemma1);
((dummy_loc,id_of_string "PreOrder_Transitive"),lemma3)])
| (None, Some lemma2, Some lemma3) ->
let _lemma_sym = declare_instance_sym binders a aeq n lemma2 in
let _lemma_trans = declare_instance_trans binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.PER"
in ignore(
anew_instance binders instance
[((dummy_loc,id_of_string "PER_Symmetric"), lemma2);
((dummy_loc,id_of_string "PER_Transitive"),lemma3)])
| (Some lemma1, Some lemma2, Some lemma3) ->
let _lemma_refl = declare_instance_refl binders a aeq n lemma1 in
let _lemma_sym = declare_instance_sym binders a aeq n lemma2 in
let _lemma_trans = declare_instance_trans binders a aeq n lemma3 in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
in ignore(
anew_instance binders instance
[((dummy_loc,id_of_string "Equivalence_Reflexive"), lemma1);
((dummy_loc,id_of_string "Equivalence_Symmetric"), lemma2);
((dummy_loc,id_of_string "Equivalence_Transitive"), lemma3)])
type 'a binders_let_argtype = (local_binder list, 'a) Genarg.abstract_argument_type
let (wit_binders_let : Genarg.tlevel binders_let_argtype),
(globwit_binders_let : Genarg.glevel binders_let_argtype),
(rawwit_binders_let : Genarg.rlevel binders_let_argtype) =
Genarg.create_arg "binders_let"
open Pcoq.Constr
VERNAC COMMAND EXTEND AddRelation
| [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"symmetry" "proved" "by" constr(lemma2) "as" ident(n) ] ->
[ declare_relation a aeq n (Some lemma1) (Some lemma2) None ]
| [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"as" ident(n) ] ->
[ declare_relation a aeq n (Some lemma1) None None ]
| [ "Add" "Relation" constr(a) constr(aeq) "as" ident(n) ] ->
[ declare_relation a aeq n None None None ]
END
VERNAC COMMAND EXTEND AddRelation2
[ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2)
"as" ident(n) ] ->
[ declare_relation a aeq n None (Some lemma2) None ]
| [ "Add" "Relation" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] ->
[ declare_relation a aeq n None (Some lemma2) (Some lemma3) ]
END
VERNAC COMMAND EXTEND AddRelation3
[ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] ->
[ declare_relation a aeq n (Some lemma1) None (Some lemma3) ]
| [ "Add" "Relation" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3)
"as" ident(n) ] ->
[ declare_relation a aeq n (Some lemma1) (Some lemma2) (Some lemma3) ]
| [ "Add" "Relation" constr(a) constr(aeq) "transitivity" "proved" "by" constr(lemma3)
"as" ident(n) ] ->
[ declare_relation a aeq n None None (Some lemma3) ]
END
VERNAC COMMAND EXTEND AddParametricRelation
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq)
"reflexivity" "proved" "by" constr(lemma1)
"symmetry" "proved" "by" constr(lemma2) "as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n (Some lemma1) (Some lemma2) None ]
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq)
"reflexivity" "proved" "by" constr(lemma1)
"as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n (Some lemma1) None None ]
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n None None None ]
END
VERNAC COMMAND EXTEND AddParametricRelation2
[ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2)
"as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n None (Some lemma2) None ]
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n None (Some lemma2) (Some lemma3) ]
END
VERNAC COMMAND EXTEND AddParametricRelation3
[ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"transitivity" "proved" "by" constr(lemma3) "as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n (Some lemma1) None (Some lemma3) ]
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "reflexivity" "proved" "by" constr(lemma1)
"symmetry" "proved" "by" constr(lemma2) "transitivity" "proved" "by" constr(lemma3)
"as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n (Some lemma1) (Some lemma2) (Some lemma3) ]
| [ "Add" "Parametric" "Relation" binders_let(b) ":" constr(a) constr(aeq) "transitivity" "proved" "by" constr(lemma3)
"as" ident(n) ] ->
[ declare_relation ~binders:b a aeq n None None (Some lemma3) ]
END
let mk_qualid s =
Libnames.Qualid (dummy_loc, Libnames.qualid_of_string s)
let cHole = CHole (dummy_loc, None)
open Entries
open Libnames
let proper_projection r ty =
let ctx, inst = decompose_prod_assum ty in
let mor, args = destApp inst in
let instarg = mkApp (r, rel_vect 0 (List.length ctx)) in
let app = mkApp (Lazy.force proper_proj,
Array.append args [| instarg |]) in
it_mkLambda_or_LetIn app ctx
let declare_projection n instance_id r =
let ty = Global.type_of_global r in
let c = constr_of_global r in
let term = proper_projection c ty in
let typ = Typing.type_of (Global.env ()) Evd.empty term in
let ctx, typ = decompose_prod_assum typ in
let typ =
let n =
let rec aux t =
match kind_of_term t with
App (f, [| a ; a' ; rel; rel' |]) when eq_constr f (Lazy.force respectful) ->
succ (aux rel')
| _ -> 0
in
let init =
match kind_of_term typ with
App (f, args) when eq_constr f (Lazy.force respectful) ->
mkApp (f, fst (array_chop (Array.length args - 2) args))
| _ -> typ
in aux init
in
let ctx,ccl = Reductionops.splay_prod_n (Global.env()) Evd.empty (3 * n) typ
in it_mkProd_or_LetIn ccl ctx
in
let typ = it_mkProd_or_LetIn typ ctx in
let cst =
{ const_entry_body = term;
const_entry_type = Some typ;
const_entry_opaque = false;
const_entry_boxed = false }
in
ignore(Declare.declare_constant n (Entries.DefinitionEntry cst, Decl_kinds.IsDefinition Decl_kinds.Definition))
let build_morphism_signature m =
let env = Global.env () in
let m = Constrintern.interp_constr Evd.empty env m in
let t = Typing.type_of env Evd.empty m in
let isevars = ref (Evd.empty, Evd.empty) in
let cstrs =
let rec aux t =
match kind_of_term t with
| Prod (na, a, b) ->
None :: aux b
| _ -> []
in aux t
in
let evars, t', sig_, cstrs = build_signature !isevars env t cstrs None snd in
let _ = isevars := evars in
let _ = List.iter
(fun (ty, rel) ->
Option.iter (fun rel ->
let default = mkApp (Lazy.force default_relation, [| ty; rel |]) in
let evars,c = new_cstr_evar !isevars env default in
isevars := evars)
rel)
cstrs
in
let morph =
mkApp (Lazy.force proper_type, [| t; sig_; m |])
in
let evd = solve_constraints env !isevars in
let m = Evarutil.nf_isevar evd morph in
Evarutil.check_evars env Evd.empty evd m; m
let default_morphism sign m =
let env = Global.env () in
let t = Typing.type_of env Evd.empty m in
let evars, _, sign, cstrs =
build_signature (Evd.empty,Evd.empty) env t (fst sign) (snd sign) (fun (ty, rel) -> rel)
in
let morph =
mkApp (Lazy.force proper_type, [| t; sign; m |])
in
let evars, mor = resolve_one_typeclass env (merge_evars evars) morph in
mor, proper_projection mor morph
let add_setoid binders a aeq t n =
init_setoid ();
let _lemma_refl = declare_instance_refl binders a aeq n (mkappc "Seq_refl" [a;aeq;t]) in
let _lemma_sym = declare_instance_sym binders a aeq n (mkappc "Seq_sym" [a;aeq;t]) in
let _lemma_trans = declare_instance_trans binders a aeq n (mkappc "Seq_trans" [a;aeq;t]) in
let instance = declare_instance a aeq n "Coq.Classes.RelationClasses.Equivalence"
in ignore(
anew_instance binders instance
[((dummy_loc,id_of_string "Equivalence_Reflexive"), mkappc "Seq_refl" [a;aeq;t]);
((dummy_loc,id_of_string "Equivalence_Symmetric"), mkappc "Seq_sym" [a;aeq;t]);
((dummy_loc,id_of_string "Equivalence_Transitive"), mkappc "Seq_trans" [a;aeq;t])])
let add_morphism_infer glob m n =
init_setoid ();
let instance_id = add_suffix n "_Proper" in
let instance = build_morphism_signature m in
if Lib.is_modtype () then
let cst = Declare.declare_internal_constant instance_id
(Entries.ParameterEntry (instance,false), Decl_kinds.IsAssumption Decl_kinds.Logical)
in
add_instance (Typeclasses.new_instance (Lazy.force proper_class) None glob cst);
declare_projection n instance_id (ConstRef cst)
else
let kind = Decl_kinds.Global, Decl_kinds.DefinitionBody Decl_kinds.Instance in
Flags.silently
(fun () ->
Command.start_proof instance_id kind instance
(fun _ -> function
Libnames.ConstRef cst ->
add_instance (Typeclasses.new_instance (Lazy.force proper_class) None
glob cst);
declare_projection n instance_id (ConstRef cst)
| _ -> assert false);
Pfedit.by (Tacinterp.interp <:tactic< Coq.Classes.SetoidTactics.add_morphism_tactic>>)) ();
Flags.if_verbose (fun x -> msg (Printer.pr_open_subgoals x)) ()
let add_morphism glob binders m s n =
init_setoid ();
let instance_id = add_suffix n "_Proper" in
let instance =
((dummy_loc,Name instance_id), Explicit,
CAppExpl (dummy_loc,
(None, Qualid (dummy_loc, Libnames.qualid_of_string "Coq.Classes.Morphisms.Proper")),
[cHole; s; m]))
in
let tac = Tacinterp.interp <:tactic<add_morphism_tactic>> in
ignore(new_instance ~global:glob binders instance (CRecord (dummy_loc,None,[]))
~generalize:false ~tac
~hook:(fun cst -> declare_projection n instance_id (ConstRef cst)) None)
VERNAC COMMAND EXTEND AddSetoid1
[ "Add" "Setoid" constr(a) constr(aeq) constr(t) "as" ident(n) ] ->
[ add_setoid [] a aeq t n ]
| [ "Add" "Parametric" "Setoid" binders_let(binders) ":" constr(a) constr(aeq) constr(t) "as" ident(n) ] ->
[ add_setoid binders a aeq t n ]
| [ "Add" "Morphism" constr(m) ":" ident(n) ] ->
[ add_morphism_infer (not (Vernacexpr.use_section_locality ())) m n ]
| [ "Add" "Morphism" constr(m) "with" "signature" lconstr(s) "as" ident(n) ] ->
[ add_morphism (not (Vernacexpr.use_section_locality ())) [] m s n ]
| [ "Add" "Parametric" "Morphism" binders_let(binders) ":" constr(m)
"with" "signature" lconstr(s) "as" ident(n) ] ->
[ add_morphism (not (Vernacexpr.use_section_locality ())) binders m s n ]
END
(** Bind to "rewrite" too *)
(** Taken from original setoid_replace, to emulate the old rewrite semantics where
lemmas are first instantiated and then rewrite proceeds. *)
let check_evar_map_of_evars_defs evd =
let metas = Evd.meta_list evd in
let check_freemetas_is_empty rebus =
Evd.Metaset.iter
(fun m ->
if Evd.meta_defined evd m then () else
raise
(Logic.RefinerError (Logic.UnresolvedBindings [Evd.meta_name evd m])))
in
List.iter
(fun (_,binding) ->
match binding with
Evd.Cltyp (_,{Evd.rebus=rebus; Evd.freemetas=freemetas}) ->
check_freemetas_is_empty rebus freemetas
| Evd.Clval (_,({Evd.rebus=rebus1; Evd.freemetas=freemetas1},_),
{Evd.rebus=rebus2; Evd.freemetas=freemetas2}) ->
check_freemetas_is_empty rebus1 freemetas1 ;
check_freemetas_is_empty rebus2 freemetas2
) metas
let unification_rewrite l2r c1 c2 cl car rel but gl =
let env = pf_env gl in
let (evd',c') =
try
(* ~flags:(false,true) to allow to mark occurrences that must not be
rewritten simply by replacing them with let-defined definitions
in the context *)
Unification.w_unify_to_subterm ~flags:rewrite_unif_flags env ((if l2r then c1 else c2),but) cl.evd
with
Pretype_errors.PretypeError _ ->
(* ~flags:(true,true) to make Ring work (since it really
exploits conversion) *)
Unification.w_unify_to_subterm ~flags:rewrite2_unif_flags
env ((if l2r then c1 else c2),but) cl.evd
in
let evd' = Typeclasses.resolve_typeclasses ~fail:false env evd' in
let cl' = {cl with evd = evd'} in
let cl' =
let mvs = clenv_dependent false cl' in
clenv_pose_metas_as_evars cl' mvs
in
let nf c = Evarutil.nf_evar ( cl'.evd) (Clenv.clenv_nf_meta cl' c) in
let c1 = nf c1 and c2 = nf c2 and car = nf car and rel = nf rel in
check_evar_map_of_evars_defs cl'.evd;
let prf = nf (Clenv.clenv_value cl') and prfty = nf (Clenv.clenv_type cl') in
let cl' = { cl' with templval = mk_freelisted prf ; templtyp = mk_freelisted prfty } in
{cl=cl'; prf=(mkRel 1); car=car; rel=rel; l2r=l2r; c1=c1; c2=c2; c=None; abs=Some (prf, prfty)}
let get_hyp gl evars (evm,c) clause l2r =
let hi = decompose_applied_relation (pf_env gl) evars c l2r in
let but = match clause with Some id -> pf_get_hyp_typ gl id | None -> pf_concl gl in
unification_rewrite hi.l2r hi.c1 hi.c2 hi.cl hi.car hi.rel but gl
let general_rewrite_flags = { under_lambdas = false; on_morphisms = false }
let apply_lemma gl (evm,c) cl l2r occs =
let sigma = project gl in
let evars = Evd.merge sigma evm in
let hypinfo = ref (get_hyp gl evars (evm,c) cl l2r) in
let app = apply_rule hypinfo occs in
let rec aux () =
Strategies.choice app (subterm true general_rewrite_flags (fun env -> aux () env))
in !hypinfo, aux ()
let general_s_rewrite cl l2r occs (c,l) ~new_goals gl =
let meta = Evarutil.new_meta() in
let hypinfo, strat = apply_lemma gl c cl l2r occs in
try cl_rewrite_clause_aux ~abs:hypinfo.abs strat meta cl gl
with Not_found ->
let {l2r=l2r; c1=x; c2=y} = hypinfo in
raise (Pretype_errors.PretypeError
(pf_env gl,
Pretype_errors.NoOccurrenceFound ((if l2r then x else y), cl)))
let general_s_rewrite_clause x =
init_setoid ();
match x with
| None -> general_s_rewrite None
| Some id -> general_s_rewrite (Some id)
let _ = Equality.register_general_rewrite_clause general_s_rewrite_clause
let is_loaded d =
let d' = List.map id_of_string d in
let dir = make_dirpath (List.rev d') in
Library.library_is_loaded dir
let try_loaded f gl =
if is_loaded ["Coq";"Classes";"RelationClasses"] then f gl
else tclFAIL 0 (str"You need to require Coq.Classes.RelationClasses first") gl
(** [setoid_]{reflexivity,symmetry,transitivity} tactics *)
let not_declared env ty rel =
tclFAIL 0 (str" The relation " ++ Printer.pr_constr_env env rel ++ str" is not a declared " ++
str ty ++ str" relation. Maybe you need to require the Setoid library")
let relation_of_constr env c =
match kind_of_term c with
| App (f, args) when Array.length args >= 2 ->
let relargs, args = array_chop (Array.length args - 2) args in
mkApp (f, relargs), args
| _ -> errorlabstrm "relation_of_constr"
(str "The term " ++ Printer.pr_constr_env env c ++ str" is not an applied relation.")
let setoid_proof gl ty fn fallback =
let env = pf_env gl in
try
let rel, args = relation_of_constr env (pf_concl gl) in
let evm, car = project gl, pf_type_of gl args.(0) in
fn env evm car rel gl
with e ->
try fallback gl
with Hipattern.NoEquationFound ->
match e with
| Not_found ->
let rel, args = relation_of_constr env (pf_concl gl) in
not_declared env ty rel gl
| _ -> raise e
let setoid_reflexivity gl =
setoid_proof gl "reflexive"
(fun env evm car rel -> apply (get_reflexive_proof env evm car rel))
(reflexivity_red true)
let setoid_symmetry gl =
setoid_proof gl "symmetric"
(fun env evm car rel -> apply (get_symmetric_proof env evm car rel))
(symmetry_red true)
let setoid_transitivity c gl =
setoid_proof gl "transitive"
(fun env evm car rel ->
let proof = get_transitive_proof env evm car rel in
match c with
| None -> eapply proof
| Some c ->
apply_with_bindings (proof,Rawterm.ExplicitBindings [ dummy_loc, Rawterm.NamedHyp (id_of_string "y"), c ]))
(transitivity_red true c)
let setoid_symmetry_in id gl =
let ctype = pf_type_of gl (mkVar id) in
let binders,concl = decompose_prod_assum ctype in
let (equiv, args) = decompose_app concl in
let rec split_last_two = function
| [c1;c2] -> [],(c1, c2)
| x::y::z -> let l,res = split_last_two (y::z) in x::l, res
| _ -> error "The term provided is not an equivalence."
in
let others,(c1,c2) = split_last_two args in
let he,c1,c2 = mkApp (equiv, Array.of_list others),c1,c2 in
let new_hyp' = mkApp (he, [| c2 ; c1 |]) in
let new_hyp = it_mkProd_or_LetIn new_hyp' binders in
tclTHENS (Tactics.cut new_hyp)
[ intro_replacing id;
tclTHENLIST [ intros; setoid_symmetry; apply (mkVar id); Tactics.assumption ] ]
gl
let _ = Tactics.register_setoid_reflexivity setoid_reflexivity
let _ = Tactics.register_setoid_symmetry setoid_symmetry
let _ = Tactics.register_setoid_symmetry_in setoid_symmetry_in
let _ = Tactics.register_setoid_transitivity setoid_transitivity
TACTIC EXTEND setoid_symmetry
[ "setoid_symmetry" ] -> [ setoid_symmetry ]
| [ "setoid_symmetry" "in" hyp(n) ] -> [ setoid_symmetry_in n ]
END
TACTIC EXTEND setoid_reflexivity
[ "setoid_reflexivity" ] -> [ setoid_reflexivity ]
END
TACTIC EXTEND setoid_transitivity
[ "setoid_transitivity" constr(t) ] -> [ setoid_transitivity (Some t) ]
| [ "setoid_etransitivity" ] -> [ setoid_transitivity None ]
END
let implify id gl =
let (_, b, ctype) = pf_get_hyp gl id in
let binders,concl = decompose_prod_assum ctype in
let ctype' =
match binders with
| (_, None, ty as hd) :: tl when not (dependent (mkRel 1) concl) ->
let env = Environ.push_rel_context tl (pf_env gl) in
let sigma = project gl in
let tyhd = Typing.type_of env sigma ty
and tyconcl = Typing.type_of (Environ.push_rel hd env) sigma concl in
let app = mkApp (arrow_morphism tyhd (subst1 mkProp tyconcl), [| ty; (subst1 mkProp concl) |]) in
it_mkProd_or_LetIn app tl
| _ -> ctype
in convert_hyp_no_check (id, b, ctype') gl
TACTIC EXTEND implify
[ "implify" hyp(n) ] -> [ implify n ]
END
|