aboutsummaryrefslogtreecommitdiffhomepage
path: root/tactics/pattern.ml
blob: 3038933e9a362f3e05f36d926a3e0ece2e6581e7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

(* $Id$ *)

open Pp
open Util
open Names
open Generic
open Term
open Reduction
open Evd
open Environ
open Proof_trees
open Stock
open Clenv

(* The pattern table for tactics. *)

(* Description: see the interface. *)

(* First part : introduction of term patterns *)

type module_mark = Stock.module_mark

type marked_term = constr Stock.stocked

let rec whd_replmeta = function
  | DOP0(XTRA("ISEVAR")) -> DOP0(Meta (new_meta()))
  | DOP2(Cast,c,_) -> whd_replmeta c
  | c -> c

let raw_sopattern_of_compattern env com =
  let c = Astterm.constr_of_com_pattern Evd.empty env com in
  strong (fun _ _ -> whd_replmeta) env Evd.empty c

let parse_pattern s =
  let com =
    try 
      Pcoq.parse_string Pcoq.Constr.constr_eoi s 
    with Stdpp.Exc_located (_ , (Stream.Failure | Stream.Error _)) ->
      error "Malformed pattern" 
  in
  raw_sopattern_of_compattern (Global.env()) com
    
let (pattern_stock : constr Stock.stock) =
  Stock.make_stock {name="PATTERN";proc=parse_pattern}

let make_module_marker = Stock.make_module_marker pattern_stock
let put_pat = Stock.stock pattern_stock
let get_pat = Stock.retrieve pattern_stock

(* Second part : Given a term with second-order variables in it,
   represented by Meta's, and possibly applied using XTRA[$SOAPP] to
   terms, this function will perform second-order, binding-preserving,
   matching, in the case where the pattern is a pattern in the sense
   of Dale Miller.

   ALGORITHM:

   Given a pattern, we decompose it, flattening Cast's and apply's,
   recursing on all operators, and pushing the name of the binder each
   time we descend a binder.

   When we reach a first-order variable, we ask that the corresponding
   term's free-rels all be higher than the depth of the current stack.

   When we reach a second-order application, we ask that the
   intersection of the free-rels of the term and the current stack be
   contained in the arguments of the application, and in that case, we
   construct a DLAM with the names on the stack.

 *)

let dest_soapp_operator = function
  | DOPN(XTRA("$SOAPP"),v) ->
      (match Array.to_list v with
	 | (DOP0(Meta n))::l ->
             let l' = 
	       List.map (function (Rel i) -> i | _ -> error "somatch") l in
             Some (n, list_uniquize l')
	 | _ -> error "somatch")
  | (DOP2(XTRA("$SOAPP"),DOP0(Meta n),Rel p)) ->
      Some (n,list_uniquize [p])
  | _ -> None

let constrain ((n:int),(m:constr)) sigma =
  if List.mem_assoc n sigma then
    if eq_constr m (List.assoc n sigma) then sigma else error "somatch"
  else 
    (n,m)::sigma
    
let build_dlam toabstract stk (m:constr) = 
  let rec buildrec m p_0 p_1 = match p_0,p_1 with 
    | (_, []) -> m
    | (n, (na::tl)) -> 
	if List.mem n toabstract then
          buildrec (DLAM(na,m)) (n+1) tl
        else 
	  buildrec (pop m) (n+1) tl
  in 
  buildrec m 1 stk

let memb_metavars m n =
  match (m,n) with
    | (None, _)     -> true
    | (Some mvs, n) -> List.mem n mvs
	  
let somatch metavars = 
  let rec sorec stk sigma p t =
    let cP = whd_castapp p 
    and cT = whd_castapp t in
    match dest_soapp_operator cP with
      | Some (n,ok_args) ->
          if not (memb_metavars metavars n) then error "somatch";
	  let frels = Intset.elements (free_rels cT) in
	  if list_subset frels ok_args then 
	    constrain (n,build_dlam ok_args stk cT) sigma
	  else 
	    error "somatch"

      | None ->
	  match (cP,cT) with
       	    | (DOP0(Meta n),m) ->
		if not (memb_metavars metavars n) then
		  match m with
		    | DOP0(Meta m_0) -> 
			if n=m_0 then sigma else error "somatch"
		    | _ -> error "somatch"
		else
		  let depth = List.length stk in
		  let frels = Intset.elements (free_rels m) in
        	  if List.for_all (fun i -> i > depth) frels then
		    constrain (n,lift (-depth) m) sigma
        	  else 
		    error "somatch"

  	    | (VAR v1,VAR v2) ->
		if v1 = v2 then sigma else error "somatch"
		  
  	    | (Rel n1,Rel n2) ->
		if n1 = n2 then sigma else error "somatch"

  	    | (DOP0 op1,DOP0 op2) ->
		if op1 = op2 then sigma else error "somatch"

  	    | (DOP1(op1,c1), DOP1(op2,c2)) ->
		if op1 = op2 then sorec stk sigma c1 c2	else error "somatch"
	       
  	    | (DOP2(op1,c1,d1), DOP2(op2,c2,d2)) ->
		if op1 = op2 then
		  sorec stk (sorec stk sigma c1 c2) d1 d2
		else 
		  error "somatch"
	       
  	    | (DOPN(op1,cl1), DOPN(op2,cl2)) ->
		if op1 = op2 & Array.length cl1 = Array.length cl2 then
		  array_fold_left2 (sorec stk) sigma cl1 cl2
		else 
		  error "somatch"

  	    | (DOPL(op1,cl1), DOPL(op2,cl2)) ->
		if op1 = op2 & List.length cl1 = List.length cl2 then
		  List.fold_left2 (sorec stk) sigma cl1 cl2
		else 
		  error "somatch"

  	    | (DLAM(_,c1), DLAM(na,c2)) -> 
		sorec (na::stk) sigma c1 c2
		  
  	    | (DLAMV(_,cl1), DLAMV(na,cl2)) ->
		if Array.length cl1 = Array.length cl2 then
		  array_fold_left2 (sorec (na::stk)) sigma cl1 cl2
		else 
		  error "somatch"
		    
  	    | _ -> error "somatch"
    in 
    sorec [] []

let somatches n pat =
  let m = get_pat pat in 
  try 
    let _ = somatch None m n in true 
  with e when Logic.catchable_exception e -> 
    false

let dest_somatch n pat =
  let m = get_pat pat in
  let mvs = collect_metas m in
  let mvb = somatch (Some (list_uniquize mvs)) m n in
  List.map (fun b -> List.assoc b mvb) mvs

let soinstance pat arglist =
  let m = get_pat pat in
  let mvs = collect_metas m in
  let mvb = List.combine mvs arglist in 
  Sosub.soexecute (Reduction.strong (fun _ _ -> Reduction.whd_meta mvb) 
		     empty_env Evd.empty m)

(* I implemented the following functions which test whether a term t
   is an inductive but non-recursive type, a general conjuction, a
   general disjunction, or a type with no constructors.

   They are more general than matching with or_term, and_term, etc, 
   since they do not depend on the name of the type. Hence, they 
   also work on ad-hoc disjunctions introduced by the user.
  
  -- Eduardo (6/8/97). *)

let mmk = make_module_marker ["Prelude"]

type 'a matching_function = constr -> 'a option

type testing_function  = constr -> bool

let op2bool = function Some _ -> true | None -> false

let match_with_non_recursive_type t = 
  match kind_of_term t with 
    | IsAppL _ -> 
        let (hdapp,args) = decomp_app t in
        (match kind_of_term hdapp with
           | IsMutInd ind -> 
               if not (Global.mind_is_recursive ind) then 
		 Some (hdapp,args) 
	       else 
		 None 
           | _ -> None)
    | _ -> None

let is_non_recursive_type t = op2bool (match_with_non_recursive_type t)

(* A general conjunction type is a non-recursive inductive type with
   only one constructor. *)

let match_with_conjunction t =
  let (hdapp,args) = decomp_app t in 
  match kind_of_term hdapp with
    | IsMutInd ind -> 
        let nconstr = Global.mind_nconstr ind in  
	if (nconstr = 1) && 
          (not (Global.mind_is_recursive ind)) &&
          (nb_prod (Global.mind_arity ind)) = (Global.mind_nparams ind)
        then 
	  Some (hdapp,args)
        else 
	  None
    | _ -> None

let is_conjunction t = op2bool (match_with_conjunction t)
    
(* A general disjunction type is a non-recursive inductive type all
   whose constructors have a single argument. *)

let match_with_disjunction t =
  let (hdapp,args) = decomp_app t in 
  match kind_of_term hdapp with
    | IsMutInd ind  ->
        let constr_types = 
	  Global.mind_lc_without_abstractions ind in
        let only_one_arg c = 
	  ((nb_prod c) - (Global.mind_nparams ind)) = 1 in 
	if (array_for_all only_one_arg constr_types) &&
          (not (Global.mind_is_recursive ind))
        then 
	  Some (hdapp,args)
        else 
	  None
    | _ -> None

let is_disjunction t = op2bool (match_with_disjunction t)

let match_with_empty_type t =
  let (hdapp,args) = decomp_app t in
  match (kind_of_term hdapp) with
    | IsMutInd ind -> 
        let nconstr = Global.mind_nconstr ind in  
	if nconstr = 0 then Some hdapp else None
    | _ ->  None
	  
let is_empty_type t = op2bool (match_with_empty_type t)

let match_with_unit_type t =
  let (hdapp,args) = decomp_app t in
  match (kind_of_term hdapp) with
    | IsMutInd ind  -> 
        let constr_types = 
	  Global.mind_lc_without_abstractions ind in 
        let nconstr = Global.mind_nconstr ind in
        let zero_args c = ((nb_prod c) - (Global.mind_nparams ind)) = 0 in  
	if nconstr = 1 && (array_for_all zero_args constr_types) then 
	  Some hdapp
        else 
	  None
    | _ -> None

let is_unit_type t = op2bool (match_with_unit_type t)


(* Checks if a given term is an application of an
   inductive binary relation R, so that R has only one constructor
   stablishing its reflexivity.  *)

let match_with_equation  t =
  let (hdapp,args) = decomp_app t in
  match (kind_of_term hdapp) with
    | IsMutInd ind -> 
        let constr_types = 
	  Global.mind_lc_without_abstractions ind in 
        let refl_rel_term1 = put_pat mmk "(A:?)(x:A)(? A x x)" in
        let refl_rel_term2 = put_pat mmk "(x:?)(? x x)" in
        let nconstr = Global.mind_nconstr ind in
	if nconstr = 1 &&
           (somatches constr_types.(0) refl_rel_term1 ||
            somatches constr_types.(0) refl_rel_term2) 
        then 
	  Some (hdapp,args)
        else 
	  None
    | _ -> None

let is_equation t = op2bool (match_with_equation  t)

let match_with_nottype t =
  let notpat = put_pat mmk "(?1->?2)" in 
  try 
    (match dest_somatch t notpat with
       | [arg;mind] when is_empty_type mind -> Some (mind,arg)
       | [arg;mind] -> None
       | _ -> anomaly "match_with_nottype")
  with UserError ("somatches",_) -> 
    None  

let is_nottype t = op2bool (match_with_nottype t)
		     
let is_imp_term = function
  | DOP2(Prod,_,DLAM(_,b)) -> not (dependent (Rel 1) b)
  | _                      -> false