1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2012 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Errors
open Util
open Names
open Term
open Vars
open Termops
open Namegen
open Context
open Evd
open Printer
open Reductionops
open Entries
open Inductiveops
open Environ
open Tacmach
open Pfedit
open Clenv
open Declare
open Tacticals
open Tactics
open Decl_kinds
let no_inductive_inconstr env constr =
(str "Cannot recognize an inductive predicate in " ++
pr_lconstr_env env constr ++
str "." ++ spc () ++ str "If there is one, may be the structure of the arity" ++
spc () ++ str "or of the type of constructors" ++ spc () ++
str "is hidden by constant definitions.")
(* Inversion stored in lemmas *)
(* ALGORITHM:
An inversion stored in a lemma is computed from a term-pattern, in
a signature, as follows:
Suppose we have an inductive relation, (I abar), in a signature Gamma:
Gamma |- (I abar)
Then we compute the free-variables of abar. Suppose that Gamma is
thinned out to only include these.
[We need technically to require that all free-variables of the
types of the free variables of abar are themselves free-variables
of abar. This needs to be checked, but it should not pose a
problem - it is hard to imagine cases where it would not hold.]
Now, we pose the goal:
(P:(Gamma)Prop)(Gamma)(I abar)->(P vars[Gamma]).
We execute the tactic:
REPEAT Intro THEN (OnLastHyp (Inv NONE false o outSOME))
This leaves us with some subgoals. All the assumptions after "P"
in these subgoals are new assumptions. I.e. if we have a subgoal,
P:(Gamma)Prop, Gamma, Hbar:Tbar |- (P ybar)
then the assumption we needed to have was
(Hbar:Tbar)(P ybar)
So we construct all the assumptions we need, and rebuild the goal
with these assumptions. Then, we can re-apply the same tactic as
above, but instead of stopping after the inversion, we just apply
the respective assumption in each subgoal.
*)
(* returns the sub_signature of sign corresponding to those identifiers that
* are not global. *)
(*
let get_local_sign sign =
let lid = ids_of_sign sign in
let globsign = Global.named_context() in
let add_local id res_sign =
if not (mem_sign globsign id) then
add_sign (lookup_sign id sign) res_sign
else
res_sign
in
List.fold_right add_local lid nil_sign
*)
(* returs the identifier of lid that was the latest declared in sign.
* (i.e. is the identifier id of lid such that
* sign_length (sign_prefix id sign) > sign_length (sign_prefix id' sign) >
* for any id'<>id in lid).
* it returns both the pair (id,(sign_prefix id sign)) *)
(*
let max_prefix_sign lid sign =
let rec max_rec (resid,prefix) = function
| [] -> (resid,prefix)
| (id::l) ->
let pre = sign_prefix id sign in
if sign_length pre > sign_length prefix then
max_rec (id,pre) l
else
max_rec (resid,prefix) l
in
match lid with
| [] -> nil_sign
| id::l -> snd (max_rec (id, sign_prefix id sign) l)
*)
let rec add_prods_sign env sigma t =
match kind_of_term (whd_betadeltaiota env sigma t) with
| Prod (na,c1,b) ->
let id = id_of_name_using_hdchar env t na in
let b'= subst1 (mkVar id) b in
add_prods_sign (push_named (id,None,c1) env) sigma b'
| LetIn (na,c1,t1,b) ->
let id = id_of_name_using_hdchar env t na in
let b'= subst1 (mkVar id) b in
add_prods_sign (push_named (id,Some c1,t1) env) sigma b'
| _ -> (env,t)
(* [dep_option] indicates wether the inversion lemma is dependent or not.
If it is dependent and I is of the form (x_bar:T_bar)(I t_bar) then
the stated goal will be (x_bar:T_bar)(H:(I t_bar))(P t_bar H)
where P:(x_bar:T_bar)(H:(I x_bar))[sort].
The generalisation of such a goal at the moment of the dependent case should
be easy.
If it is non dependent, then if [I]=(I t_bar) and (x_bar:T_bar) are the
variables occurring in [I], then the stated goal will be:
(x_bar:T_bar)(I t_bar)->(P x_bar)
where P: P:(x_bar:T_bar)[sort].
*)
let compute_first_inversion_scheme env sigma ind sort dep_option =
let indf,realargs = dest_ind_type ind in
let allvars = ids_of_context env in
let p = next_ident_away (Id.of_string "P") allvars in
let pty,goal =
if dep_option then
let pty = make_arity env true indf sort in
let goal =
mkProd
(Anonymous, mkAppliedInd ind, applist(mkVar p,realargs@[mkRel 1]))
in
pty,goal
else
let i = mkAppliedInd ind in
let ivars = global_vars env i in
let revargs,ownsign =
fold_named_context
(fun env (id,_,_ as d) (revargs,hyps) ->
if List.mem id ivars then
((mkVar id)::revargs,add_named_decl d hyps)
else
(revargs,hyps))
env ~init:([],[])
in
let pty = it_mkNamedProd_or_LetIn (mkSort sort) ownsign in
let goal = mkArrow i (applist(mkVar p, List.rev revargs)) in
(pty,goal)
in
let npty = nf_betadeltaiota env sigma pty in
let extenv = push_named (p,None,npty) env in
extenv, goal
(* [inversion_scheme sign I]
Given a local signature, [sign], and an instance of an inductive
relation, [I], inversion_scheme will prove the associated inversion
scheme on sort [sort]. Depending on the value of [dep_option] it will
build a dependent lemma or a non-dependent one *)
let inversion_scheme env sigma t sort dep_option inv_op =
let (env,i) = add_prods_sign env sigma t in
let ind =
try find_rectype env sigma i
with Not_found ->
errorlabstrm "inversion_scheme" (no_inductive_inconstr env i)
in
let (invEnv,invGoal) =
compute_first_inversion_scheme env sigma ind sort dep_option
in
assert
(List.subset
(global_vars env invGoal)
(ids_of_named_context (named_context invEnv)));
(*
errorlabstrm "lemma_inversion"
(str"Computed inversion goal was not closed in initial signature.");
*)
let pf = Proof.start [invEnv,invGoal] in
Proof.run_tactic env (Proofview.V82.tactic (tclTHEN intro (onLastHypId inv_op))) pf;
let pfterm = List.hd (Proof.partial_proof pf) in
let global_named_context = Global.named_context () in
let ownSign = ref begin
fold_named_context
(fun env (id,_,_ as d) sign ->
if mem_named_context id global_named_context then sign
else add_named_decl d sign)
invEnv ~init:empty_named_context
end in
let avoid = ref [] in
let { sigma=sigma } = Proof.V82.subgoals pf in
let rec fill_holes c =
match kind_of_term c with
| Evar (e,args) ->
let h = next_ident_away (Id.of_string "H") !avoid in
let ty,inst = Evarutil.generalize_evar_over_rels sigma (e,args) in
avoid := h::!avoid;
ownSign := add_named_decl (h,None,ty) !ownSign;
applist (mkVar h, inst)
| _ -> map_constr fill_holes c
in
let c = fill_holes pfterm in
(* warning: side-effect on ownSign *)
let invProof = it_mkNamedLambda_or_LetIn c !ownSign
in
invProof
let add_inversion_lemma name env sigma t sort dep inv_op =
let invProof = inversion_scheme env sigma t sort dep inv_op in
let entry = {
const_entry_body = invProof;
const_entry_secctx = None;
const_entry_type = None;
const_entry_opaque = false;
const_entry_inline_code = false;
} in
let _ = declare_constant name (DefinitionEntry entry, IsProof Lemma) in
()
(* inv_op = Inv (derives de complete inv. lemma)
* inv_op = InvNoThining (derives de semi inversion lemma) *)
let inversion_lemma_from_goal n na (loc,id) sort dep_option inv_op =
let pts = get_pftreestate() in
let { it=gls ; sigma=sigma } = Proof.V82.subgoals pts in
let gl = { it = List.nth gls (n-1) ; sigma=sigma } in
let t =
try pf_get_hyp_typ gl id
with Not_found -> Pretype_errors.error_var_not_found_loc loc id in
let env = pf_env gl and sigma = project gl in
add_inversion_lemma na env sigma t sort dep_option inv_op
let add_inversion_lemma_exn na com comsort bool tac =
let env = Global.env () and sigma = Evd.empty in
let c = Constrintern.interp_type sigma env com in
let sort = Pretyping.interp_sort comsort in
try
add_inversion_lemma na env sigma c sort bool tac
with
| UserError ("Case analysis",s) -> (* référence à Indrec *)
errorlabstrm "Inv needs Nodep Prop Set" s
(* ================================= *)
(* Applying a given inversion lemma *)
(* ================================= *)
let lemInv id c gls =
try
let clause = mk_clenv_type_of gls c in
let clause = clenv_constrain_last_binding (mkVar id) clause in
Clenvtac.res_pf clause ~flags:Unification.elim_flags gls
with
| NoSuchBinding ->
errorlabstrm ""
(hov 0 (pr_constr c ++ spc () ++ str "does not refer to an inversion lemma."))
| UserError (a,b) ->
errorlabstrm "LemInv"
(str "Cannot refine current goal with the lemma " ++
pr_lconstr_env (Global.env()) c)
let lemInv_gen id c = try_intros_until (fun id -> lemInv id c) id
let lemInvIn id c ids gls =
let hyps = List.map (pf_get_hyp gls) ids in
let intros_replace_ids gls =
let nb_of_new_hyp = nb_prod (pf_concl gls) - List.length ids in
if nb_of_new_hyp < 1 then
intros_replacing ids gls
else
(tclTHEN (tclDO nb_of_new_hyp intro) (intros_replacing ids)) gls
in
((tclTHEN (tclTHEN (bring_hyps hyps) (lemInv id c))
(intros_replace_ids)) gls)
let lemInvIn_gen id c l = try_intros_until (fun id -> lemInvIn id c l) id
let lemInv_clause id c = function
| [] -> lemInv_gen id c
| l -> lemInvIn_gen id c l
|