1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA - CNRS - LIX - LRI - PPS - Copyright 1999-2015 *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
open Pp
open Errors
open Util
open Names
open Nameops
open Term
open Vars
open Context
open Termops
open Namegen
open Environ
open Inductiveops
open Printer
open Retyping
open Tacmach.New
open Tacticals.New
open Tactics
open Elim
open Equality
open Misctypes
open Tacexpr
open Proofview.Notations
let clear hyps = Proofview.V82.tactic (clear hyps)
let var_occurs_in_pf gl id =
let env = Proofview.Goal.env gl in
occur_var env id (Proofview.Goal.concl gl) ||
List.exists (occur_var_in_decl env id) (Proofview.Goal.hyps gl)
(* [make_inv_predicate (ity,args) C]
is given the inductive type, its arguments, both the global
parameters and its local arguments, and is expected to produce a
predicate P such that if largs is the "local" part of the
arguments, then (P largs) will be convertible with a conclusion of
the form:
<A1>a1=a1-><A2>a2=a2 ... -> C
Algorithm: suppose length(largs)=n
(1) Push the entire arity, [xbar:Abar], carrying along largs and
the conclusion
(2) Pair up each ai with its respective Rel version: a1==(Rel n),
a2==(Rel n-1), etc.
(3) For each pair, ai,Rel j, if the Ai is dependent - that is, the
type of [Rel j] is an open term, then we construct the iterated
tuple, [make_iterated_tuple] does it, and use that for our equation
Otherwise, we just use <Ai>ai=Rel j
*)
type inversion_status = Dep of constr option | NoDep
let compute_eqn env sigma n i ai =
(mkRel (n-i),get_type_of env sigma (mkRel (n-i)))
let make_inv_predicate env evd indf realargs id status concl =
let nrealargs = List.length realargs in
let (hyps,concl) =
match status with
| NoDep ->
(* We push the arity and leave concl unchanged *)
let hyps_arity,_ = get_arity env indf in
(hyps_arity,concl)
| Dep dflt_concl ->
if not (occur_var env id concl) then
errorlabstrm "make_inv_predicate"
(str "Current goal does not depend on " ++ pr_id id ++ str".");
(* We abstract the conclusion of goal with respect to
realargs and c to * be concl in order to rewrite and have
c also rewritten when the case * will be done *)
let pred =
match dflt_concl with
| Some concl -> concl (*assumed it's some [x1..xn,H:I(x1..xn)]C*)
| None ->
let sort = get_sort_family_of env !evd concl in
let sort = Evarutil.evd_comb1 (Evd.fresh_sort_in_family env) evd sort in
let p = make_arity env true indf sort in
let evd',(p,ptyp) = Unification.abstract_list_all env
!evd p concl (realargs@[mkVar id])
in evd := evd'; p in
let hyps,bodypred = decompose_lam_n_assum (nrealargs+1) pred in
(* We lift to make room for the equations *)
(hyps,lift nrealargs bodypred)
in
let nhyps = rel_context_length hyps in
let env' = push_rel_context hyps env in
(* Now the arity is pushed, and we need to construct the pairs
* ai,mkRel(n-i+1) *)
(* Now, we can recurse down this list, for each ai,(mkRel k) whether to
push <Ai>(mkRel k)=ai (when Ai is closed).
In any case, we carry along the rest of pairs *)
let eqdata = Coqlib.build_coq_eq_data () in
let rec build_concl eqns args n = function
| [] -> it_mkProd concl eqns, Array.rev_of_list args
| ai :: restlist ->
let ai = lift nhyps ai in
let (xi, ti) = compute_eqn env' !evd nhyps n ai in
let (lhs,eqnty,rhs) =
if closed0 ti then
(xi,ti,ai)
else
let sigma, res = make_iterated_tuple env' !evd ai (xi,ti) in
evd := sigma; res
in
let eq_term = eqdata.Coqlib.eq in
let eq = Evarutil.evd_comb1 (Evd.fresh_global env) evd eq_term in
let eqn = applist (eq,[eqnty;lhs;rhs]) in
let eqns = (Anonymous, lift n eqn) :: eqns in
let refl_term = eqdata.Coqlib.refl in
let refl_term = Evarutil.evd_comb1 (Evd.fresh_global env) evd refl_term in
let refl = mkApp (refl_term, [|eqnty; rhs|]) in
let _ = Evarutil.evd_comb1 (Typing.e_type_of env) evd refl in
let args = refl :: args in
build_concl eqns args (succ n) restlist
in
let (newconcl, args) = build_concl [] [] 0 realargs in
let predicate = it_mkLambda_or_LetIn_name env newconcl hyps in
let _ = Evarutil.evd_comb1 (Typing.e_type_of env) evd predicate in
(* OK - this predicate should now be usable by res_elimination_then to
do elimination on the conclusion. *)
predicate, args
(* The result of the elimination is a bunch of goals like:
|- (cibar:Cibar)Equands->C
where the cibar are either dependent or not. We are fed a
signature, with "true" for every recursive argument, and false for
every non-recursive one. So we need to do the
sign_branch_len(sign) intros, thinning out all recursive
assumptions. This leaves us with exactly length(sign) assumptions.
We save their names, and then do introductions for all the equands
(there are some number of them, which is the other argument of the
tactic)
This gives us the #neqns equations, whose names we get also, and
the #length(sign) arguments.
Suppose that #nodep of these arguments are non-dependent.
Generalize and thin them.
This gives us #dep = #length(sign)-#nodep arguments which are
dependent.
Now, we want to take each of the equations, and do all possible
injections to get the left-hand-side to be a variable. At the same
time, if we find a lhs/rhs pair which are different, we can
discriminate them to prove false and finish the branch.
Then, we thin away the equations, and do the introductions for the
#nodep arguments which we generalized before.
*)
(* Called after the case-assumptions have been killed off, and all the
intros have been done. Given that the clause in question is an
equality (if it isn't we fail), we are responsible for projecting
the equality, using Injection and Discriminate, and applying it to
the concusion *)
(* Computes the subset of hypothesis in the local context whose
type depends on t (should be of the form (mkVar id)), then
it generalizes them, applies tac to rewrite all occurrencies of t,
and introduces generalized hypotheis.
Precondition: t=(mkVar id) *)
let dependent_hyps env id idlist gl =
let rec dep_rec =function
| [] -> []
| (id1,_,_)::l ->
(* Update the type of id1: it may have been subject to rewriting *)
let d = pf_get_hyp id1 gl in
if occur_var_in_decl env id d
then d :: dep_rec l
else dep_rec l
in
dep_rec idlist
let split_dep_and_nodep hyps gl =
List.fold_right
(fun (id,_,_ as d) (l1,l2) ->
if var_occurs_in_pf gl id then (d::l1,l2) else (l1,d::l2))
hyps ([],[])
(* Computation of dids is late; must have been done in rewrite_equations*)
(* Will keep generalizing and introducing back and forth... *)
(* Moreover, others hyps depending of dids should have been *)
(* generalized; in such a way that [dids] can endly be cleared *)
(* Consider for instance this case extracted from Well_Ordering.v
A : Set
B : A ->Set
a0 : A
f : (B a0) ->WO
y : WO
H0 : (le_WO y (sup a0 f))
============================
(Acc WO le_WO y)
Inversion H0 gives
A : Set
B : A ->Set
a0 : A
f : (B a0) ->WO
y : WO
H0 : (le_WO y (sup a0 f))
a1 : A
f0 : (B a1) ->WO
v : (B a1)
H1 : (f0 v)=y
H3 : a1=a0
f1 : (B a0) ->WO
v0 : (B a0)
H4 : (existS A [a:A](B a) ->WO a0 f1)=(existS A [a:A](B a) ->WO a0 f)
============================
(Acc WO le_WO (f1 v0))
while, ideally, we would have expected
A : Set
B : A ->Set
a0 : A
f0 : (B a0)->WO
v : (B a0)
============================
(Acc WO le_WO (f0 v))
obtained from destruction with equalities
A : Set
B : A ->Set
a0 : A
f : (B a0) ->WO
y : WO
H0 : (le_WO y (sup a0 f))
a1 : A
f0 : (B a1)->WO
v : (B a1)
H1 : (f0 v)=y
H2 : (sup a1 f0)=(sup a0 f)
============================
(Acc WO le_WO (f0 v))
by clearing initial hypothesis H0 and its dependency y, clearing H1
(in fact H1 can be avoided using the same trick as for newdestruct),
decomposing H2 to get a1=a0 and (a1,f0)=(a0,f), replacing a1 by a0
everywhere and removing a1 and a1=a0 (in fact it would have been more
regular to replace a0 by a1, avoiding f1 and v0 cannot replace f0 and v),
finally removing H4 (here because f is not used, more generally after using
eq_dep and replacing f by f0) [and finally rename a0, f0 into a,f].
Summary: nine useless hypotheses!
Nota: with Inversion_clear, only four useless hypotheses
*)
let generalizeRewriteIntros as_mode tac depids id =
Proofview.tclENV >>= fun env ->
Proofview.Goal.nf_enter begin fun gl ->
let dids = dependent_hyps env id depids gl in
let reintros = if as_mode then intros_replacing else intros_possibly_replacing in
(tclTHENLIST
[bring_hyps dids; tac;
(* may actually fail to replace if dependent in a previous eq *)
reintros (ids_of_named_context dids)])
end
let error_too_many_names pats =
let loc = Loc.join_loc (fst (List.hd pats)) (fst (List.last pats)) in
Proofview.tclENV >>= fun env ->
tclZEROMSG ~loc (
str "Unexpected " ++
str (String.plural (List.length pats) "introduction pattern") ++
str ": " ++ pr_enum (Miscprint.pr_intro_pattern (fun c -> Printer.pr_constr (snd (c env Evd.empty)))) pats ++
str ".")
let rec get_names (allow_conj,issimple) (loc,pat as x) = match pat with
| IntroNaming IntroAnonymous | IntroForthcoming _ ->
error "Anonymous pattern not allowed for inversion equations."
| IntroNaming (IntroFresh _) ->
error "Fresh pattern not allowed for inversion equations."
| IntroAction IntroWildcard ->
error "Discarding pattern not allowed for inversion equations."
| IntroAction (IntroRewrite _) ->
error "Rewriting pattern not allowed for inversion equations."
| IntroAction (IntroOrAndPattern [[]]) when allow_conj -> (None, [])
| IntroAction (IntroOrAndPattern [(_,IntroNaming (IntroIdentifier id)) :: _ as l])
when allow_conj -> (Some id,l)
| IntroAction (IntroOrAndPattern [_]) ->
if issimple then
error"Conjunctive patterns not allowed for simple inversion equations."
else
error"Nested conjunctive patterns not allowed for inversion equations."
| IntroAction (IntroInjection l) ->
error "Injection patterns not allowed for inversion equations."
| IntroAction (IntroOrAndPattern l) ->
error "Disjunctive patterns not allowed for inversion equations."
| IntroAction (IntroApplyOn (c,pat)) ->
error "Apply patterns not allowed for inversion equations."
| IntroNaming (IntroIdentifier id) ->
(Some id,[x])
let rec tclMAP_i allow_conj n tacfun = function
| [] -> tclDO n (tacfun (None,[]))
| a::l as l' ->
if Int.equal n 0 then error_too_many_names l'
else
tclTHEN
(tacfun (get_names allow_conj a))
(tclMAP_i allow_conj (n-1) tacfun l)
let remember_first_eq id x = if !x == MoveLast then x := MoveAfter id
(* invariant: ProjectAndApply is responsible for erasing the clause
which it is given as input
It simplifies the clause (an equality) to use it as a rewrite rule and then
erases the result of the simplification. *)
(* invariant: ProjectAndApplyNoThining simplifies the clause (an equality) .
If it can discriminate then the goal is proved, if not tries to use it as
a rewrite rule. It erases the clause which is given as input *)
let projectAndApply as_mode thin avoid id eqname names depids =
let subst_hyp l2r id =
tclTHEN (tclTRY(rewriteInConcl l2r (mkVar id)))
(if thin then clear [id] else (remember_first_eq id eqname; tclIDTAC))
in
let substHypIfVariable tac id =
Proofview.Goal.nf_enter begin fun gl ->
(** We only look at the type of hypothesis "id" *)
let hyp = pf_nf_evar gl (pf_get_hyp_typ id (Proofview.Goal.assume gl)) in
let (t,t1,t2) = Hipattern.dest_nf_eq gl hyp in
match (kind_of_term t1, kind_of_term t2) with
| Var id1, _ -> generalizeRewriteIntros as_mode (subst_hyp true id) depids id1
| _, Var id2 -> generalizeRewriteIntros as_mode (subst_hyp false id) depids id2
| _ -> tac id
end
in
let deq_trailer id clear_flag _ neqns =
assert (clear_flag == None);
tclTHENLIST
[if as_mode then clear [id] else tclIDTAC;
(tclMAP_i (false,false) neqns (function (idopt,_) ->
tclTRY (tclTHEN
(intro_move_avoid idopt avoid MoveLast)
(* try again to substitute and if still not a variable after *)
(* decomposition, arbitrarily try to rewrite RL !? *)
(tclTRY (onLastHypId (substHypIfVariable (fun id -> subst_hyp false id))))))
names);
(if as_mode then tclIDTAC else clear [id])]
(* Doing the above late breaks the computation of dids in
generalizeRewriteIntros, and hence breaks proper intros_replacing
but it is needed for compatibility *)
in
substHypIfVariable
(* If no immediate variable in the equation, try to decompose it *)
(* and apply a trailer which again try to substitute *)
(fun id ->
dEqThen false (deq_trailer id)
(Some (None,ElimOnConstr (mkVar id,NoBindings))))
id
let nLastDecls i tac =
Proofview.Goal.nf_enter (fun gl -> tac (nLastDecls gl i))
(* Introduction of the equations on arguments
othin: discriminates Simple Inversion, Inversion and Inversion_clear
None: the equations are introduced, but not rewritten
Some thin: the equations are rewritten, and cleared if thin is true *)
let rewrite_equations as_mode othin neqns names ba =
Proofview.Goal.nf_enter begin fun gl ->
let (depids,nodepids) = split_dep_and_nodep ba.Tacticals.assums gl in
let first_eq = ref MoveLast in
let avoid = if as_mode then List.map pi1 nodepids else [] in
match othin with
| Some thin ->
tclTHENLIST
[tclDO neqns intro;
bring_hyps nodepids;
clear (ids_of_named_context nodepids);
(nLastDecls neqns (fun ctx -> bring_hyps (List.rev ctx)));
(nLastDecls neqns (fun ctx -> clear (ids_of_named_context ctx)));
tclMAP_i (true,false) neqns (fun (idopt,names) ->
(tclTHEN
(intro_move_avoid idopt avoid MoveLast)
(onLastHypId (fun id ->
tclTRY (projectAndApply as_mode thin avoid id first_eq names depids)))))
names;
tclMAP (fun (id,_,_) -> tclIDTAC >>= fun () -> (* delay for [first_eq]. *)
let idopt = if as_mode then Some id else None in
intro_move idopt (if thin then MoveLast else !first_eq))
nodepids;
(tclMAP (fun (id,_,_) -> tclTRY (clear [id])) depids)]
| None ->
(* simple inversion *)
if as_mode then
tclMAP_i (false,true) neqns (fun (idopt,_) ->
intro_move idopt MoveLast) names
else
(tclTHENLIST
[tclDO neqns intro;
bring_hyps nodepids;
clear (ids_of_named_context nodepids)])
end
let interp_inversion_kind = function
| SimpleInversion -> None
| FullInversion -> Some false
| FullInversionClear -> Some true
let rewrite_equations_tac as_mode othin id neqns names ba =
let othin = interp_inversion_kind othin in
let tac = rewrite_equations as_mode othin neqns names ba in
match othin with
| Some true (* if Inversion_clear, clear the hypothesis *) ->
tclTHEN tac (tclTRY (clear [id]))
| _ ->
tac
let raw_inversion inv_kind id status names =
Proofview.Goal.nf_enter begin fun gl ->
let sigma = Proofview.Goal.sigma gl in
let env = Proofview.Goal.env gl in
let concl = Proofview.Goal.concl gl in
let c = mkVar id in
let (ind, t) =
try pf_apply Tacred.reduce_to_atomic_ind gl (pf_type_of gl c)
with UserError _ ->
let msg = str "The type of " ++ pr_id id ++ str " is not inductive." in
Errors.errorlabstrm "" msg
in
let IndType (indf,realargs) = find_rectype env sigma t in
let evdref = ref sigma in
let (elim_predicate, args) =
make_inv_predicate env evdref indf realargs id status concl in
let sigma = !evdref in
let (cut_concl,case_tac) =
if status != NoDep && (dependent c concl) then
Reduction.beta_appvect elim_predicate (Array.of_list (realargs@[c])),
case_then_using
else
Reduction.beta_appvect elim_predicate (Array.of_list realargs),
case_nodep_then_using
in
let refined id =
let prf = mkApp (mkVar id, args) in
Proofview.Refine.refine (fun h -> h, prf)
in
let neqns = List.length realargs in
let as_mode = names != None in
tclTHEN (Proofview.Unsafe.tclEVARS sigma)
(tclTHENS
(assert_before Anonymous cut_concl)
[case_tac names
(introCaseAssumsThen
(rewrite_equations_tac as_mode inv_kind id neqns))
(Some elim_predicate) ind (c, t);
onLastHypId (fun id -> tclTHEN (refined id) reflexivity)])
end
(* Error messages of the inversion tactics *)
let wrap_inv_error id = function (e, info) -> match e with
| Indrec.RecursionSchemeError
(Indrec.NotAllowedCaseAnalysis (_,(Type _ | Prop Pos as k),i)) ->
Proofview.tclENV >>= fun env ->
tclZEROMSG (
(strbrk "Inversion would require case analysis on sort " ++
pr_sort Evd.empty k ++
strbrk " which is not allowed for inductive definition " ++
pr_inductive env (fst i) ++ str "."))
| e -> Proofview.tclZERO ~info e
(* The most general inversion tactic *)
let inversion inv_kind status names id =
Proofview.tclORELSE
(raw_inversion inv_kind id status names)
(wrap_inv_error id)
(* Specializing it... *)
let inv_gen thin status names =
try_intros_until (inversion thin status names)
open Tacexpr
let inv k = inv_gen k NoDep
let inv_tac id = inv FullInversion None (NamedHyp id)
let inv_clear_tac id = inv FullInversionClear None (NamedHyp id)
let dinv k c = inv_gen k (Dep c)
let dinv_tac id = dinv FullInversion None None (NamedHyp id)
let dinv_clear_tac id = dinv FullInversionClear None None (NamedHyp id)
(* InvIn will bring the specified clauses into the conclusion, and then
* perform inversion on the named hypothesis. After, it will intro them
* back to their places in the hyp-list. *)
let invIn k names ids id =
Proofview.Goal.nf_enter begin fun gl ->
let hyps = List.map (fun id -> pf_get_hyp id gl) ids in
let concl = Proofview.Goal.concl gl in
let nb_prod_init = nb_prod concl in
let intros_replace_ids =
Proofview.Goal.enter begin fun gl ->
let concl = pf_nf_concl gl in
let nb_of_new_hyp =
nb_prod concl - (List.length hyps + nb_prod_init)
in
if nb_of_new_hyp < 1 then
intros_replacing ids
else
tclTHEN (tclDO nb_of_new_hyp intro) (intros_replacing ids)
end
in
Proofview.tclORELSE
(tclTHENLIST
[bring_hyps hyps;
inversion k NoDep names id;
intros_replace_ids])
(wrap_inv_error id)
end
let invIn_gen k names idl = try_intros_until (invIn k names idl)
let inv_clause k names = function
| [] -> inv k names
| idl -> invIn_gen k names idl
|