1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
(************************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(* \VV/ **************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(************************************************************************)
(* $Id$ *)
open Term
open Proof_type
open Tacmach
open Rawterm
open Refiner
open Genarg
open Tacexpr
open Tactics
open Util
let inj_id id = (dummy_loc,id)
(* Basic tactics *)
let h_intro_move x y =
abstract_tactic (TacIntroMove (x, option_app inj_id y)) (intro_move x y)
let h_intro x = h_intro_move (Some x) None
let h_intros_until x = abstract_tactic (TacIntrosUntil x) (intros_until x)
let h_assumption = abstract_tactic TacAssumption assumption
let h_exact c = abstract_tactic (TacExact c) (exact_check c)
let h_exact_no_check c = abstract_tactic (TacExactNoCheck c) (exact_no_check c)
let h_apply cb = abstract_tactic (TacApply cb) (apply_with_bindings cb)
let h_elim cb cbo = abstract_tactic (TacElim (cb,cbo)) (elim cb cbo)
let h_elim_type c = abstract_tactic (TacElimType c) (elim_type c)
let h_case cb = abstract_tactic (TacCase cb) (general_case_analysis cb)
let h_case_type c = abstract_tactic (TacCaseType c) (case_type c)
let h_fix ido n = abstract_tactic (TacFix (ido,n)) (fix ido n)
let h_mutual_fix id n l =
abstract_tactic (TacMutualFix (id,n,l)) (mutual_fix id n l)
let h_cofix ido = abstract_tactic (TacCofix ido) (cofix ido)
let h_mutual_cofix id l =
abstract_tactic (TacMutualCofix (id,l)) (mutual_cofix id l)
let h_cut c = abstract_tactic (TacCut c) (cut c)
let h_generalize cl = abstract_tactic (TacGeneralize cl) (generalize cl)
let h_generalize_dep c = abstract_tactic (TacGeneralizeDep c)(generalize_dep c)
let h_let_tac na c cl =
abstract_tactic (TacLetTac (na,c,cl)) (letin_tac true na c cl)
let h_instantiate n c ido =
(Evar_tactics.instantiate n c ido)
(* abstract_tactic (TacInstantiate (n,c,cls))
(Evar_refiner.instantiate n c (simple_clause_of cls)) *)
(* Derived basic tactics *)
let h_simple_induction h =
abstract_tactic (TacSimpleInduction h) (simple_induct h)
let h_simple_destruct h =
abstract_tactic (TacSimpleDestruct h) (simple_destruct h)
let h_new_induction c e idl =
abstract_tactic (TacNewInduction (c,e,idl)) (new_induct c e idl)
let h_new_destruct c e idl =
abstract_tactic (TacNewDestruct (c,e,idl)) (new_destruct c e idl)
let h_specialize n d = abstract_tactic (TacSpecialize (n,d)) (new_hyp n d)
let h_lapply c = abstract_tactic (TacLApply c) (cut_and_apply c)
(* Context management *)
let h_clear b l = abstract_tactic (TacClear (b,l))
((if b then keep else clear) l)
let h_clear_body l = abstract_tactic (TacClearBody l) (clear_body l)
let h_move dep id1 id2 =
abstract_tactic (TacMove (dep,id1,id2)) (move_hyp dep id1 id2)
let h_rename id1 id2 =
abstract_tactic (TacRename (id1,id2)) (rename_hyp id1 id2)
(* Constructors *)
let h_left l = abstract_tactic (TacLeft l) (left l)
let h_right l = abstract_tactic (TacLeft l) (right l)
let h_split l = abstract_tactic (TacSplit (false,l)) (split l)
(* Moved to tacinterp because of dependence in Tacinterp.interp
let h_any_constructor t =
abstract_tactic (TacAnyConstructor t) (any_constructor t)
*)
let h_constructor n l =
abstract_tactic (TacConstructor(AI n,l))(constructor_tac None n l)
let h_one_constructor n = h_constructor n NoBindings
let h_simplest_left = h_left NoBindings
let h_simplest_right = h_right NoBindings
(* Conversion *)
let h_reduce r cl = abstract_tactic (TacReduce (r,cl)) (reduce r cl)
let h_change oc c cl = abstract_tactic (TacChange (oc,c,cl)) (change oc c cl)
(* Equivalence relations *)
let h_reflexivity = abstract_tactic TacReflexivity intros_reflexivity
let h_symmetry c = abstract_tactic (TacSymmetry c) (intros_symmetry c)
let h_transitivity c =
abstract_tactic (TacTransitivity c) (intros_transitivity c)
let h_simplest_apply c = h_apply (c,NoBindings)
let h_simplest_elim c = h_elim (c,NoBindings) None
let h_simplest_case c = h_case (c,NoBindings)
let h_intro_patterns l = abstract_tactic (TacIntroPattern l) (intro_patterns l)
|