aboutsummaryrefslogtreecommitdiffhomepage
path: root/tactics/extratactics.ml4
blob: 18b8f7326ffc8125881eff046ca59ccf17bc4bea (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
(***********************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team    *)
(* <O___,, *        INRIA-Rocquencourt  &  LRI-CNRS-Orsay              *)
(*   \VV/  *************************************************************)
(*    //   *      This file is distributed under the terms of the      *)
(*         *       GNU Lesser General Public License Version 2.1       *)
(***********************************************************************)

(*i camlp4deps: "parsing/grammar.cma" i*)

(* $Id$ *)

open Pp
open Pcoq
open Genarg
open Extraargs

(* Equality *)
open Equality

TACTIC EXTEND Rewrite
  [ "Rewrite" orient(b) constr_with_bindings(c) ] -> [general_rewrite_bindings b c]
END

TACTIC EXTEND RewriteIn
 [ "Rewrite" orient(b) constr_with_bindings(c) "in" ident(h) ] ->
 [general_rewrite_in b h c]
END

let h_rewriteLR x = h_rewrite true (x,Rawterm.NoBindings)

TACTIC EXTEND Replace
  [ "Replace" constr(c1) "with" constr(c2) ] -> [ replace c1 c2 ]
END

TACTIC EXTEND ReplaceIn
  [ "Replace" constr(c1) "with" constr(c2) "in" ident(h) ]
  -> [ failwith "Replace in: TODO" ]
END

TACTIC EXTEND Replacetermleft
  [ "Replace" "->" constr(c)  ] -> [ replace_term_left c ]
END

TACTIC EXTEND Replacetermright
  [ "Replace" "<-" constr(c)  ] -> [ replace_term_right c ]
END

TACTIC EXTEND Replaceterm
  [ "Replace" constr(c)  ] -> [ replace_term c ]
END

TACTIC EXTEND ReplacetermInleft
  [ "Replace"  "->" constr(c) "in" ident(h) ]
  -> [ replace_term_in_left c h ]
END

TACTIC EXTEND ReplacetermInright
  [ "Replace"  "<-" constr(c) "in" ident(h) ]
  -> [ replace_term_in_right c h ]
END

TACTIC EXTEND ReplacetermIn
  [ "Replace" constr(c) "in" ident(h) ]
  -> [ replace_term_in c h ]
END

TACTIC EXTEND DEq
  [ "Simplify_eq" quantified_hypothesis_opt(h) ] -> [ dEq h ]
END

TACTIC EXTEND Discriminate
  [ "Discriminate" quantified_hypothesis_opt(h) ] -> [ discr_tac h ]
END

let h_discrHyp id = h_discriminate (Some id)

TACTIC EXTEND Injection
  [ "Injection" quantified_hypothesis_opt(h) ] -> [ injClause h ]
END

let h_injHyp id = h_injection (Some id)

TACTIC EXTEND ConditionalRewrite
  [ "Conditional" tactic(tac) "Rewrite" orient(b) constr_with_bindings(c) ]
    -> [ conditional_rewrite b (snd tac) c ]
END

TACTIC EXTEND ConditionalRewriteIn
  [ "Conditional" tactic(tac) "Rewrite" orient(b) constr_with_bindings(c)
    "in" ident(h) ]
    -> [ conditional_rewrite_in b h (snd tac) c ]
END

TACTIC EXTEND DependentRewrite
| [ "Dependent" "Rewrite" orient(b) ident(id) ] -> [ substHypInConcl b id ]
| [ "CutRewrite" orient(b) constr(eqn) ] -> [ substConcl b eqn ]
| [ "CutRewrite" orient(b) constr(eqn) "in" ident(id) ]
      -> [ substHyp b eqn id ]
END

(* Contradiction *)
open Contradiction

TACTIC EXTEND Absurd
 [ "Absurd" constr(c) ] -> [ absurd c ]
END

TACTIC EXTEND Contradiction
 [ "Contradiction" constr_with_bindings_opt(c) ] -> [ contradiction c ]
END

(* AutoRewrite *)

open Autorewrite
TACTIC EXTEND AutorewriteV7
  [ "AutoRewrite" "[" ne_preident_list(l) "]" ] ->
    [ autorewrite Refiner.tclIDTAC l ]
| [ "AutoRewrite" "[" ne_preident_list(l) "]" "using" tactic(t) ] ->
    [ autorewrite (snd t) l ]
END
TACTIC EXTEND AutorewriteV8
  [ "AutoRewrite" "with" ne_preident_list(l) ] ->
    [ autorewrite Refiner.tclIDTAC l ]
| [ "AutoRewrite" "with" ne_preident_list(l) "using" tactic(t) ] ->
    [ autorewrite (snd t) l ]
END

let add_rewrite_hint name ort t lcsr =
  let env = Global.env() and sigma = Evd.empty in
  let f c = Constrintern.interp_constr sigma env c, ort, t in
  add_rew_rules name (List.map f lcsr)

(* V7 *)
VERNAC COMMAND EXTEND HintRewriteV7
  [ "Hint" "Rewrite" orient(o) "[" ne_constr_list(l) "]" "in" preident(b) ] ->
  [ add_rewrite_hint b o (Tacexpr.TacId "") l ]
| [ "Hint" "Rewrite" orient(o) "[" ne_constr_list(l) "]" "in" preident(b)
    "using" tactic(t) ] ->
  [ add_rewrite_hint b o t l ]
END

(* V8 *)
VERNAC COMMAND EXTEND HintRewriteV8
  [ "Hint" "Rewrite" orient(o) ne_constr_list(l) ":" preident(b) ] ->
  [ add_rewrite_hint b o (Tacexpr.TacId "") l ]
| [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t)
    ":" preident(b) ] ->
  [ add_rewrite_hint b o t l ]
END


(* Refine *)

open Refine

TACTIC EXTEND Refine
  [ "Refine" castedopenconstr(c) ] -> [ refine c ]
END

let refine_tac = h_refine

(* Setoid_replace *)

open Setoid_replace

TACTIC EXTEND SetoidReplace
  [ "Setoid_replace" constr(c1) "with" constr(c2) ]
  -> [ setoid_replace c1 c2 None]
END

TACTIC EXTEND SetoidRewrite
  [ "Setoid_rewrite" orient(b) constr(c) ] -> [ general_s_rewrite b c ]
END

VERNAC COMMAND EXTEND AddSetoid
| [ "Add" "Setoid" constr(a) constr(aeq) constr(t) ] -> [ add_setoid a aeq t ]
| [ "Add" "Morphism" constr(m) ":" ident(s) ] -> [ new_named_morphism s m ]
END

(* Inversion lemmas (Leminv) *)

open Inv
open Leminv

VERNAC COMMAND EXTEND DeriveInversionClear
  [ "Derive" "Inversion_clear" ident(na) ident(id) ]
  -> [ inversion_lemma_from_goal 1 na id Term.mk_Prop false inv_clear_tac ]

| [ "Derive" "Inversion_clear" natural(n) ident(na) ident(id) ]
  -> [ inversion_lemma_from_goal n na id Term.mk_Prop false inv_clear_tac ]

| [ "Derive" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ]
  -> [ add_inversion_lemma_exn na c s false inv_clear_tac ]

| [ "Derive" "Inversion_clear"  ident(na) "with" constr(c) ]
  -> [ add_inversion_lemma_exn na c (Rawterm.RProp Term.Null) false inv_clear_tac ]
END

open Term
open Rawterm

VERNAC COMMAND EXTEND DeriveInversion
| [ "Derive" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ]
  -> [ add_inversion_lemma_exn na c s false half_inv_tac ]

| [ "Derive" "Inversion" ident(na) "with" constr(c) ]
  -> [ add_inversion_lemma_exn na c (RProp Null) false half_inv_tac ]

| [ "Derive" "Inversion" ident(na) ident(id) ]
  -> [ inversion_lemma_from_goal 1 na id Term.mk_Prop false half_inv_tac ]

| [ "Derive" "Inversion" natural(n) ident(na) ident(id) ]
  -> [ inversion_lemma_from_goal n na id Term.mk_Prop false half_inv_tac ]
END

VERNAC COMMAND EXTEND DeriveDependentInversion
| [ "Derive" "Dependent" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ]
  -> [ add_inversion_lemma_exn na c s true half_dinv_tac ]
    END

VERNAC COMMAND EXTEND DeriveDependentInversionClear
| [ "Derive" "Dependent" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ]
  -> [ add_inversion_lemma_exn na c s true dinv_clear_tac ]
END

(* Subst *)

TACTIC EXTEND Subst
| [ "Subst" ne_ident_list(l) ] -> [ subst l ]
| [ "Subst" ] -> [ subst_all ]
END