blob: 18b8f7326ffc8125881eff046ca59ccf17bc4bea (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
|
(***********************************************************************)
(* v * The Coq Proof Assistant / The Coq Development Team *)
(* <O___,, * INRIA-Rocquencourt & LRI-CNRS-Orsay *)
(* \VV/ *************************************************************)
(* // * This file is distributed under the terms of the *)
(* * GNU Lesser General Public License Version 2.1 *)
(***********************************************************************)
(*i camlp4deps: "parsing/grammar.cma" i*)
(* $Id$ *)
open Pp
open Pcoq
open Genarg
open Extraargs
(* Equality *)
open Equality
TACTIC EXTEND Rewrite
[ "Rewrite" orient(b) constr_with_bindings(c) ] -> [general_rewrite_bindings b c]
END
TACTIC EXTEND RewriteIn
[ "Rewrite" orient(b) constr_with_bindings(c) "in" ident(h) ] ->
[general_rewrite_in b h c]
END
let h_rewriteLR x = h_rewrite true (x,Rawterm.NoBindings)
TACTIC EXTEND Replace
[ "Replace" constr(c1) "with" constr(c2) ] -> [ replace c1 c2 ]
END
TACTIC EXTEND ReplaceIn
[ "Replace" constr(c1) "with" constr(c2) "in" ident(h) ]
-> [ failwith "Replace in: TODO" ]
END
TACTIC EXTEND Replacetermleft
[ "Replace" "->" constr(c) ] -> [ replace_term_left c ]
END
TACTIC EXTEND Replacetermright
[ "Replace" "<-" constr(c) ] -> [ replace_term_right c ]
END
TACTIC EXTEND Replaceterm
[ "Replace" constr(c) ] -> [ replace_term c ]
END
TACTIC EXTEND ReplacetermInleft
[ "Replace" "->" constr(c) "in" ident(h) ]
-> [ replace_term_in_left c h ]
END
TACTIC EXTEND ReplacetermInright
[ "Replace" "<-" constr(c) "in" ident(h) ]
-> [ replace_term_in_right c h ]
END
TACTIC EXTEND ReplacetermIn
[ "Replace" constr(c) "in" ident(h) ]
-> [ replace_term_in c h ]
END
TACTIC EXTEND DEq
[ "Simplify_eq" quantified_hypothesis_opt(h) ] -> [ dEq h ]
END
TACTIC EXTEND Discriminate
[ "Discriminate" quantified_hypothesis_opt(h) ] -> [ discr_tac h ]
END
let h_discrHyp id = h_discriminate (Some id)
TACTIC EXTEND Injection
[ "Injection" quantified_hypothesis_opt(h) ] -> [ injClause h ]
END
let h_injHyp id = h_injection (Some id)
TACTIC EXTEND ConditionalRewrite
[ "Conditional" tactic(tac) "Rewrite" orient(b) constr_with_bindings(c) ]
-> [ conditional_rewrite b (snd tac) c ]
END
TACTIC EXTEND ConditionalRewriteIn
[ "Conditional" tactic(tac) "Rewrite" orient(b) constr_with_bindings(c)
"in" ident(h) ]
-> [ conditional_rewrite_in b h (snd tac) c ]
END
TACTIC EXTEND DependentRewrite
| [ "Dependent" "Rewrite" orient(b) ident(id) ] -> [ substHypInConcl b id ]
| [ "CutRewrite" orient(b) constr(eqn) ] -> [ substConcl b eqn ]
| [ "CutRewrite" orient(b) constr(eqn) "in" ident(id) ]
-> [ substHyp b eqn id ]
END
(* Contradiction *)
open Contradiction
TACTIC EXTEND Absurd
[ "Absurd" constr(c) ] -> [ absurd c ]
END
TACTIC EXTEND Contradiction
[ "Contradiction" constr_with_bindings_opt(c) ] -> [ contradiction c ]
END
(* AutoRewrite *)
open Autorewrite
TACTIC EXTEND AutorewriteV7
[ "AutoRewrite" "[" ne_preident_list(l) "]" ] ->
[ autorewrite Refiner.tclIDTAC l ]
| [ "AutoRewrite" "[" ne_preident_list(l) "]" "using" tactic(t) ] ->
[ autorewrite (snd t) l ]
END
TACTIC EXTEND AutorewriteV8
[ "AutoRewrite" "with" ne_preident_list(l) ] ->
[ autorewrite Refiner.tclIDTAC l ]
| [ "AutoRewrite" "with" ne_preident_list(l) "using" tactic(t) ] ->
[ autorewrite (snd t) l ]
END
let add_rewrite_hint name ort t lcsr =
let env = Global.env() and sigma = Evd.empty in
let f c = Constrintern.interp_constr sigma env c, ort, t in
add_rew_rules name (List.map f lcsr)
(* V7 *)
VERNAC COMMAND EXTEND HintRewriteV7
[ "Hint" "Rewrite" orient(o) "[" ne_constr_list(l) "]" "in" preident(b) ] ->
[ add_rewrite_hint b o (Tacexpr.TacId "") l ]
| [ "Hint" "Rewrite" orient(o) "[" ne_constr_list(l) "]" "in" preident(b)
"using" tactic(t) ] ->
[ add_rewrite_hint b o t l ]
END
(* V8 *)
VERNAC COMMAND EXTEND HintRewriteV8
[ "Hint" "Rewrite" orient(o) ne_constr_list(l) ":" preident(b) ] ->
[ add_rewrite_hint b o (Tacexpr.TacId "") l ]
| [ "Hint" "Rewrite" orient(o) ne_constr_list(l) "using" tactic(t)
":" preident(b) ] ->
[ add_rewrite_hint b o t l ]
END
(* Refine *)
open Refine
TACTIC EXTEND Refine
[ "Refine" castedopenconstr(c) ] -> [ refine c ]
END
let refine_tac = h_refine
(* Setoid_replace *)
open Setoid_replace
TACTIC EXTEND SetoidReplace
[ "Setoid_replace" constr(c1) "with" constr(c2) ]
-> [ setoid_replace c1 c2 None]
END
TACTIC EXTEND SetoidRewrite
[ "Setoid_rewrite" orient(b) constr(c) ] -> [ general_s_rewrite b c ]
END
VERNAC COMMAND EXTEND AddSetoid
| [ "Add" "Setoid" constr(a) constr(aeq) constr(t) ] -> [ add_setoid a aeq t ]
| [ "Add" "Morphism" constr(m) ":" ident(s) ] -> [ new_named_morphism s m ]
END
(* Inversion lemmas (Leminv) *)
open Inv
open Leminv
VERNAC COMMAND EXTEND DeriveInversionClear
[ "Derive" "Inversion_clear" ident(na) ident(id) ]
-> [ inversion_lemma_from_goal 1 na id Term.mk_Prop false inv_clear_tac ]
| [ "Derive" "Inversion_clear" natural(n) ident(na) ident(id) ]
-> [ inversion_lemma_from_goal n na id Term.mk_Prop false inv_clear_tac ]
| [ "Derive" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s false inv_clear_tac ]
| [ "Derive" "Inversion_clear" ident(na) "with" constr(c) ]
-> [ add_inversion_lemma_exn na c (Rawterm.RProp Term.Null) false inv_clear_tac ]
END
open Term
open Rawterm
VERNAC COMMAND EXTEND DeriveInversion
| [ "Derive" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s false half_inv_tac ]
| [ "Derive" "Inversion" ident(na) "with" constr(c) ]
-> [ add_inversion_lemma_exn na c (RProp Null) false half_inv_tac ]
| [ "Derive" "Inversion" ident(na) ident(id) ]
-> [ inversion_lemma_from_goal 1 na id Term.mk_Prop false half_inv_tac ]
| [ "Derive" "Inversion" natural(n) ident(na) ident(id) ]
-> [ inversion_lemma_from_goal n na id Term.mk_Prop false half_inv_tac ]
END
VERNAC COMMAND EXTEND DeriveDependentInversion
| [ "Derive" "Dependent" "Inversion" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s true half_dinv_tac ]
END
VERNAC COMMAND EXTEND DeriveDependentInversionClear
| [ "Derive" "Dependent" "Inversion_clear" ident(na) "with" constr(c) "Sort" sort(s) ]
-> [ add_inversion_lemma_exn na c s true dinv_clear_tac ]
END
(* Subst *)
TACTIC EXTEND Subst
| [ "Subst" ne_ident_list(l) ] -> [ subst l ]
| [ "Subst" ] -> [ subst_all ]
END
|