aboutsummaryrefslogtreecommitdiffhomepage
path: root/tactics/equality.ml
blob: 20e32bea3b0ddb4aa4e9e9536583bfc1d24cee5a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
(************************************************************************)
(*  v      *   The Coq Proof Assistant  /  The Coq Development Team     *)
(* <O___,, * CNRS-Ecole Polytechnique-INRIA Futurs-Universite Paris Sud *)
(*   \VV/  **************************************************************)
(*    //   *      This file is distributed under the terms of the       *)
(*         *       GNU Lesser General Public License Version 2.1        *)
(************************************************************************)

(* $Id$ *)

open Pp
open Util
open Names
open Nameops
open Univ
open Term
open Termops
open Inductive
open Inductiveops
open Environ
open Libnames
open Reductionops
open Typeops
open Typing
open Retyping
open Tacmach
open Proof_type
open Logic
open Evar_refiner
open Pattern
open Matching
open Hipattern
open Tacexpr
open Tacticals
open Tactics
open Tacred
open Rawterm
open Coqlib
open Vernacexpr
open Declarations
open Indrec
open Printer
open Clenv
open Clenvtac
open Evd

(* Options *)

let discr_do_intro = ref true

open Goptions
let _ =
  declare_bool_option 
    { optsync  = true;
      optname  = "automatic introduction of hypotheses by discriminate";
      optkey   = ["Discriminate";"Introduction"];
      optread  = (fun () -> !discr_do_intro);
      optwrite = (:=) discr_do_intro }

(* Rewriting tactics *)

type orientation = bool

type conditions = 
  | Naive (* Only try the first occurence of the lemma (default) *)
  | FirstSolved (* Use the first match whose side-conditions are solved *)
  | AllMatches (* Rewrite all matches whose side-conditions are solved *)
      
(* Warning : rewriting from left to right only works
   if there exists in the context a theorem named <eqname>_<suffsort>_r
   with type (A:<sort>)(x:A)(P:A->Prop)(P x)->(y:A)(eqname A y x)->(P y).
   If another equality myeq is introduced, then corresponding theorems
   myeq_ind_r, myeq_rec_r and myeq_rect_r have to be proven. See below.
   -- Eduardo (19/8/97)
*)

let rewrite_unif_flags = {
  Unification.modulo_conv_on_closed_terms = None;
  Unification.use_metas_eagerly = true;
  Unification.modulo_delta = empty_transparent_state;
  Unification.resolve_evars = true;
  Unification.use_evars_pattern_unification = true;
}

let side_tac tac sidetac =
  match sidetac with
  | None -> tac
  | Some sidetac -> tclTHENSFIRSTn tac [|tclIDTAC|] sidetac

let instantiate_lemma_all env sigma gl c ty l l2r concl =
  let eqclause = Clenv.make_clenv_binding { gl with sigma = sigma } (c,ty) l in
  let (equiv, args) = decompose_app (Clenv.clenv_type eqclause) in
  let rec split_last_two = function
      | [c1;c2] -> [],(c1, c2)
      | x::y::z ->
	  let l,res = split_last_two (y::z) in x::l, res
      | _ -> error "The term provided is not an applied relation." in
  let others,(c1,c2) = split_last_two args in
  let try_occ (evd', c') = 
    let cl' = {eqclause with evd = evd'} in
    let mvs = clenv_dependent false cl' in
      clenv_pose_metas_as_evars cl' mvs
  in
  let occs = 
    Unification.w_unify_to_subterm_all ~flags:rewrite_unif_flags env
      ((if l2r then c1 else c2),concl) eqclause.evd
  in List.map try_occ occs

let instantiate_lemma env sigma gl c ty l l2r concl =
  let gl = { gl with sigma = sigma } in
  let ct = pf_type_of gl c in
  let t = try snd (pf_reduce_to_quantified_ind gl ct) with UserError _ -> ct in
  let eqclause = Clenv.make_clenv_binding gl (c,t) l in
   [eqclause]

let rewrite_elim with_evars c e ?(allow_K=true) =
  general_elim_clause_gen (elimination_clause_scheme with_evars allow_K) c e

let rewrite_elim_in with_evars id c e =
  general_elim_clause_gen (elimination_in_clause_scheme with_evars id) c e

(* Ad hoc asymmetric general_elim_clause *)
let general_elim_clause with_evars cls rew elim =
  try 
    (match cls with
      | None ->
	  (* was tclWEAK_PROGRESS which only fails for tactics generating one 
             subgoal and did not fail for useless conditional rewritings generating
             an extra condition *)
	  tclNOTSAMEGOAL (rewrite_elim with_evars rew elim ~allow_K:false)
      | Some id -> rewrite_elim_in with_evars id rew elim)
  with Pretype_errors.PretypeError (env,
				   (Pretype_errors.NoOccurrenceFound (c', _))) ->
    raise (Pretype_errors.PretypeError
	      (env, (Pretype_errors.NoOccurrenceFound (c', cls))))

let general_elim_clause with_evars tac cls sigma c t l l2r elim gl =
  let all, firstonly, tac = 
    match tac with
    | None -> false, false, None
    | Some (tac, Naive) -> false, false, Some tac
    | Some (tac, FirstSolved) -> true, true, Some (tclCOMPLETE tac)
    | Some (tac, AllMatches) -> true, false, Some (tclCOMPLETE tac)
  in
  let cs = 
    (if not all then instantiate_lemma else instantiate_lemma_all)
      (pf_env gl) sigma gl c t l l2r
      (match cls with None -> pf_concl gl | Some id -> pf_get_hyp_typ gl id)
  in
  let try_clause c =
    side_tac (tclTHEN (Refiner.tclEVARS c.evd) (general_elim_clause with_evars cls c elim)) tac
  in
    if firstonly then
      tclFIRST (List.map try_clause cs) gl
    else tclMAP try_clause cs gl

(* The next function decides in particular whether to try a regular 
  rewrite or a generalized rewrite. 
  Approach is to break everything, if [eq] appears in head position 
  then regular rewrite else try general rewrite. 
  If occurrences are set, use general rewrite.
*)

let general_rewrite_clause = ref (fun _ -> assert false)
let register_general_rewrite_clause = (:=) general_rewrite_clause

let is_applied_rewrite_relation = ref (fun _ _ _ _ -> None)
let register_is_applied_rewrite_relation = (:=) is_applied_rewrite_relation

(* find_elim determines which elimination principle is necessary to
   eliminate lbeq on sort_of_gl. *)

let find_elim hdcncl lft2rgt cls gl =
  let suffix = elimination_suffix (elimination_sort_of_clause cls gl) in
  let hdcncls = string_of_inductive hdcncl ^ suffix in 
  let rwr_thm = if lft2rgt = (cls = None) then hdcncls^"_r" else hdcncls in
  try pf_global gl (id_of_string rwr_thm)
  with Not_found -> error ("Cannot find rewrite principle "^rwr_thm^".")

let leibniz_rewrite_ebindings_clause cls lft2rgt tac sigma c t l with_evars gl hdcncl =
  let elim = find_elim hdcncl lft2rgt cls gl in
  general_elim_clause with_evars tac cls sigma c t l lft2rgt (elim,NoBindings) gl

let adjust_rewriting_direction args lft2rgt =
  if List.length args = 1 then
    (* equality to a constant, like in eq_true *)
    (* more natural to see -> as the rewriting to the constant *)
    not lft2rgt
  else
    (* other equality *)
    lft2rgt

let rewrite_side_tac tac sidetac = side_tac tac (Option.map fst sidetac)

let general_rewrite_ebindings_clause cls lft2rgt occs ?tac
    ((c,l) : open_constr with_bindings) with_evars gl =
  if occs <> all_occurrences then (
    rewrite_side_tac (!general_rewrite_clause cls lft2rgt occs (c,l) ~new_goals:[]) tac gl)
  else
    let env = pf_env gl in
    let sigma, c' = c in
    let sigma = Evd.merge sigma (project gl) in
    let ctype = get_type_of env sigma c' in 
    let rels, t = decompose_prod_assum (whd_betaiotazeta sigma ctype) in
      match match_with_equality_type t with
      | Some (hdcncl,args) -> (* Fast path: direct leibniz rewrite *)
	  let lft2rgt = adjust_rewriting_direction args lft2rgt in
          leibniz_rewrite_ebindings_clause cls lft2rgt tac sigma c' (it_mkProd_or_LetIn t rels) 
	    l with_evars gl hdcncl
      | None ->
	  try
	    rewrite_side_tac (!general_rewrite_clause cls 
				 lft2rgt occs (c,l) ~new_goals:[]) tac gl
	  with e -> (* Try to see if there's an equality hidden *)
	    let env' = push_rel_context rels env in
	    let rels',t' = splay_prod_assum env' sigma t in (* Search for underlying eq *)
	      match match_with_equality_type t' with
	      | Some (hdcncl,args) ->
		  let lft2rgt = adjust_rewriting_direction args lft2rgt in
		    leibniz_rewrite_ebindings_clause cls lft2rgt tac sigma c'
		      (it_mkProd_or_LetIn t' (rels' @ rels)) l with_evars gl hdcncl
	      | None -> raise e
		  (* error "The provided term does not end with an equality or a declared rewrite relation." *)
		      
let general_rewrite_ebindings = 
  general_rewrite_ebindings_clause None

let general_rewrite_bindings l2r occs ?tac (c,bl) = 
  general_rewrite_ebindings_clause None l2r occs ?tac (inj_open c,inj_ebindings bl)

let general_rewrite l2r occs ?tac c =
  general_rewrite_bindings l2r occs ?tac (c,NoBindings) false

let general_rewrite_ebindings_in l2r occs ?tac id =
  general_rewrite_ebindings_clause (Some id) l2r occs ?tac

let general_rewrite_bindings_in l2r occs ?tac id (c,bl) =
  general_rewrite_ebindings_clause (Some id) l2r occs ?tac (inj_open c,inj_ebindings bl)

let general_rewrite_in l2r occs ?tac id c = 
  general_rewrite_ebindings_clause (Some id) l2r occs ?tac (inj_open c,NoBindings)

let general_multi_rewrite l2r with_evars ?tac c cl = 
  let occs_of = on_snd (List.fold_left 
    (fun acc ->
      function ArgArg x -> x :: acc | ArgVar _ -> acc)
    [])
  in
  match cl.onhyps with 
    | Some l -> 
	(* If a precise list of locations is given, success is mandatory for
	   each of these locations. *)
	let rec do_hyps = function 
	  | [] -> tclIDTAC
	  | ((occs,id),_) :: l -> 
	    tclTHENFIRST
	      (general_rewrite_ebindings_in l2r (occs_of occs) ?tac id c with_evars)
	      (do_hyps l)
	in 
	if cl.concl_occs = no_occurrences_expr then do_hyps l else
	  tclTHENFIRST
	   (general_rewrite_ebindings l2r (occs_of cl.concl_occs) ?tac c with_evars)
	   (do_hyps l)
    | None -> 
	(* Otherwise, if we are told to rewrite in all hypothesis via the 
           syntax "* |-", we fail iff all the different rewrites fail *) 
	let rec do_hyps_atleastonce = function 
	  | [] -> (fun gl -> error "Nothing to rewrite.")
	  | id :: l -> 
	    tclIFTHENTRYELSEMUST 
	     (general_rewrite_ebindings_in l2r all_occurrences ?tac id c with_evars)
	     (do_hyps_atleastonce l)
	in 
	let do_hyps gl = 
	  (* If the term to rewrite uses an hypothesis H, don't rewrite in H *)
	  let ids = 
	    let ids_in_c = Environ.global_vars_set (Global.env()) (snd (fst c)) in
	      Idset.fold (fun id l -> list_remove id l) ids_in_c (pf_ids_of_hyps gl)
	  in do_hyps_atleastonce ids gl
	in 
	if cl.concl_occs = no_occurrences_expr then do_hyps else
	  tclIFTHENTRYELSEMUST 
	   (general_rewrite_ebindings l2r (occs_of cl.concl_occs) ?tac c with_evars)
	   do_hyps

let general_multi_multi_rewrite with_evars l cl tac = 
  let do1 l2r c = general_multi_rewrite l2r with_evars ?tac c cl in
  let rec doN l2r c = function 
    | Precisely n when n <= 0 -> tclIDTAC
    | Precisely 1 -> do1 l2r c
    | Precisely n -> tclTHENFIRST (do1 l2r c) (doN l2r c (Precisely (n-1)))
    | RepeatStar -> tclREPEAT_MAIN (do1 l2r c)
    | RepeatPlus -> tclTHENFIRST (do1 l2r c) (doN l2r c RepeatStar)
    | UpTo n when n<=0 -> tclIDTAC
    | UpTo n -> tclTHENFIRST (tclTRY (do1 l2r c)) (doN l2r c (UpTo (n-1)))
  in 
  let rec loop = function
    | [] -> tclIDTAC
    | (l2r,m,c)::l -> tclTHENFIRST (doN l2r c m) (loop l)
  in loop l

let rewriteLR = general_rewrite true all_occurrences
let rewriteRL = general_rewrite false all_occurrences

(* Replacing tactics *)

(* eq,sym_eq : equality on Type and its symmetry theorem
   c2 c1 : c1 is to be replaced by c2
   unsafe : If true, do not check that c1 and c2 are convertible
   tac : Used to prove the equality c1 = c2 
   gl : goal *)

let multi_replace clause c2 c1 unsafe try_prove_eq_opt gl = 
  let try_prove_eq = 
    match try_prove_eq_opt with 
      | None -> tclIDTAC
      | Some tac ->  tclCOMPLETE tac
  in
  let t1 = pf_apply get_type_of gl c1 
  and t2 = pf_apply get_type_of gl c2 in
  if unsafe or (pf_conv_x gl t1 t2) then
    let e = build_coq_eq () in
    let sym = build_coq_eq_sym () in
    let eq = applist (e, [t1;c1;c2]) in
    tclTHENS (assert_as false None eq)
      [onLastHypId (fun id -> 
	tclTHEN 
	  (tclTRY (general_multi_rewrite false false (inj_open (mkVar id),NoBindings) clause))
	  (clear [id]));
       tclFIRST
	 [assumption;
	  tclTHEN (apply sym) assumption;
	  try_prove_eq
	 ]
      ] gl
  else
    error "Terms do not have convertible types."
  

let replace c2 c1 gl = multi_replace onConcl c2 c1 false None gl

let replace_in id c2 c1 gl = multi_replace (onHyp id) c2 c1 false None gl

let replace_by c2 c1 tac gl = multi_replace onConcl c2 c1 false (Some tac) gl

let replace_in_by id c2 c1 tac gl = multi_replace (onHyp id) c2 c1 false (Some tac) gl

let replace_in_clause_maybe_by c2 c1 cl tac_opt gl = 
  multi_replace cl c2 c1 false tac_opt gl

(* End of Eduardo's code. The rest of this file could be improved
   using the functions match_with_equation, etc that I defined
   in Pattern.ml.
   -- Eduardo (19/8/97)
*)

(* Tactics for equality reasoning with the "eq" relation. This code
   will work with any equivalence relation which is substitutive *)

(* [find_positions t1 t2]

   will find the positions in the two terms which are suitable for
   discrimination, or for injection.  Obviously, if there is a
   position which is suitable for discrimination, then we want to
   exploit it, and not bother with injection.  So when we find a
   position which is suitable for discrimination, we will just raise
   an exception with that position.

   So the algorithm goes like this:

   if [t1] and [t2] start with the same constructor, then we can
   continue to try to find positions in the arguments of [t1] and
   [t2].

   if [t1] and [t2] do not start with the same constructor, then we
   have found a discrimination position

   if one [t1] or [t2] do not start with a constructor and the two
   terms are not already convertible, then we have found an injection
   position.

   A discriminating position consists of a constructor-path and a pair
   of operators.  The constructor-path tells us how to get down to the
   place where the two operators, which must differ, can be found.

   An injecting position has two terms instead of the two operators,
   since these terms are different, but not manifestly so.

   A constructor-path is a list of pairs of (operator * int), where
   the int (based at 0) tells us which argument of the operator we
   descended into.

 *)

exception DiscrFound of
  (constructor * int) list * constructor * constructor

let find_positions env sigma t1 t2 =
  let rec findrec sorts posn t1 t2 =
    let hd1,args1 = whd_betadeltaiota_stack env sigma t1 in
    let hd2,args2 = whd_betadeltaiota_stack env sigma t2 in
    match (kind_of_term hd1, kind_of_term hd2) with
  	
      | Construct sp1, Construct sp2 
          when List.length args1 = mis_constructor_nargs_env env sp1
            ->
	  let sorts = list_intersect sorts (allowed_sorts env (fst sp1)) in
          (* both sides are fully applied constructors, so either we descend,
             or we can discriminate here. *)
	  if is_conv env sigma hd1 hd2 then
	    let nrealargs = constructor_nrealargs env sp1 in
	    let rargs1 = list_lastn nrealargs args1 in
	    let rargs2 = list_lastn nrealargs args2 in
            List.flatten
	      (list_map2_i (fun i -> findrec sorts ((sp1,i)::posn))
		0 rargs1 rargs2)
	  else if List.mem InType sorts then (* see build_discriminator *)
	    raise (DiscrFound (List.rev posn,sp1,sp2))
	  else []

      | _ ->
	  let t1_0 = applist (hd1,args1) 
          and t2_0 = applist (hd2,args2) in
          if is_conv env sigma t1_0 t2_0 then 
	    []
          else
	    let ty1_0 = get_type_of env sigma t1_0 in
	    let s = get_sort_family_of env sigma ty1_0 in
	    if List.mem s sorts then [(List.rev posn,t1_0,t2_0)] else [] in 
  try
    (* Rem: to allow injection on proofs objects, just add InProp *)
    Inr (findrec [InSet;InType] [] t1 t2)
  with DiscrFound (path,c1,c2) ->
    Inl (path,c1,c2)

let discriminable env sigma t1 t2 =
  match find_positions env sigma t1 t2 with
    | Inl _ -> true
    | _ -> false

let injectable env sigma t1 t2 = 
    match find_positions env sigma t1 t2 with
    | Inl _ | Inr [] -> false
    | Inr _ -> true


(* Once we have found a position, we need to project down to it.  If
   we are discriminating, then we need to produce False on one of the
   branches of the discriminator, and True on the other one.  So the
   result type of the case-expressions is always Prop.

   If we are injecting, then we need to discover the result-type.
   This can be difficult, since the type of the two terms at the
   injection-position can be different, and we need to find a
   dependent sigma-type which generalizes them both.

   We can get an approximation to the right type to choose by:

   (0) Before beginning, we reserve a patvar for the default
   value of the match, to be used in all the bogus branches.

   (1) perform the case-splits, down to the site of the injection.  At
   each step, we have a term which is the "head" of the next
   case-split.  At the point when we actually reach the end of our
   path, the "head" is the term to return.  We compute its type, and
   then, backwards, make a sigma-type with every free debruijn
   reference in that type.  We can be finer, and first do a S(TRONG)NF
   on the type, so that we get the fewest number of references
   possible.

   (2) This gives us a closed type for the head, which we use for the
   types of all the case-splits.

   (3) Now, we can compute the type of one of T1, T2, and then unify
   it with the type of the last component of the result-type, and this
   will give us the bindings for the other arguments of the tuple.

 *)

(* The algorithm, then is to perform successive case-splits.  We have
   the result-type of the case-split, and also the type of that
   result-type.  We have a "direction" we want to follow, i.e. a
   constructor-number, and in all other "directions", we want to juse
   use the default-value.

   After doing the case-split, we call the afterfun, with the updated
   environment, to produce the term for the desired "direction".

   The assumption is made here that the result-type is not manifestly
   functional, so we can just use the length of the branch-type to
   know how many lambda's to stick in.

 *)

(* [descend_then sigma env head dirn]

   returns the number of products introduced, and the environment
   which is active, in the body of the case-branch given by [dirn],
   along with a continuation, which expects to be fed:

    (1) the value of the body of the branch given by [dirn]
    (2) the default-value

    (3) the type of the default-value, which must also be the type of
        the body of the [dirn] branch

   the continuation then constructs the case-split.
 *)

let descend_then sigma env head dirn =
  let IndType (indf,_) =
    try find_rectype env sigma (get_type_of env sigma head)
    with Not_found ->
      error "Cannot project on an inductive type derived from a dependency." in
   let ind,_ = dest_ind_family indf in
  let (mib,mip) = lookup_mind_specif env ind in
  let cstr = get_constructors env indf in
  let dirn_nlams = cstr.(dirn-1).cs_nargs in
  let dirn_env = push_rel_context cstr.(dirn-1).cs_args env in
  (dirn_nlams,
   dirn_env,
   (fun dirnval (dfltval,resty) ->
      let deparsign = make_arity_signature env true indf in
      let p =
	it_mkLambda_or_LetIn (lift (mip.mind_nrealargs+1) resty) deparsign in
      let build_branch i =
	let result = if i = dirn then dirnval else dfltval in
	it_mkLambda_or_LetIn_name env result cstr.(i-1).cs_args in
      let brl =
        List.map build_branch
          (interval 1 (Array.length mip.mind_consnames)) in
      let ci = make_case_info env ind RegularStyle in
      mkCase (ci, p, head, Array.of_list brl)))

(* Now we need to construct the discriminator, given a discriminable
   position.  This boils down to:

   (1) If the position is directly beneath us, then we need to do a
   case-split, with result-type Prop, and stick True and False into
   the branches, as is convenient.

   (2) If the position is not directly beneath us, then we need to
   call descend_then, to descend one step, and then recursively
   construct the discriminator.

 *)

(* [construct_discriminator env dirn headval]
   constructs a case-split on [headval], with the [dirn]-th branch
   giving [True], and all the rest giving False. *)

let construct_discriminator sigma env dirn c sort =
  let IndType(indf,_) =
    try find_rectype env sigma (get_type_of env sigma c)
    with Not_found ->
       (* one can find Rel(k) in case of dependent constructors 
          like T := c : (A:Set)A->T and a discrimination 
          on (c bool true) = (c bool false)
          CP : changed assert false in a more informative error
       *)
      errorlabstrm "Equality.construct_discriminator"
	(str "Cannot discriminate on inductive constructors with 
		 dependent types.") in
  let (ind,_) = dest_ind_family indf in
  let (mib,mip) = lookup_mind_specif env ind in
  let (true_0,false_0,sort_0) = build_coq_True(),build_coq_False(),Prop Null in
  let deparsign = make_arity_signature env true indf in
  let p = it_mkLambda_or_LetIn (mkSort sort_0) deparsign in
  let cstrs = get_constructors env indf in
  let build_branch i =
    let endpt = if i = dirn then true_0 else false_0 in
    it_mkLambda_or_LetIn endpt cstrs.(i-1).cs_args in
  let brl =
    List.map build_branch(interval 1 (Array.length mip.mind_consnames)) in
  let ci = make_case_info env ind RegularStyle in
  mkCase (ci, p, c, Array.of_list brl)
    
let rec build_discriminator sigma env dirn c sort = function
  | [] -> construct_discriminator sigma env dirn c sort
  | ((sp,cnum),argnum)::l ->
      let (cnum_nlams,cnum_env,kont) = descend_then sigma env c cnum in
      let newc = mkRel(cnum_nlams-argnum) in
      let subval = build_discriminator sigma cnum_env dirn newc sort l  in
      kont subval (build_coq_False (),mkSort (Prop Null))

(* Note: discrimination could be more clever: if some elimination is
   not allowed because of a large impredicative constructor in the
   path (see allowed_sorts in find_positions), the positions could
   still be discrimated by projecting first instead of putting the
   discrimination combinator inside the projecting combinator. Example
   of relevant situation:

   Inductive t:Set := c : forall A:Set, A -> nat -> t.
   Goal ~ c _ 0 0 = c _ 0 1. intro. discriminate H.
*)

let gen_absurdity id gl =
  if is_empty_type (pf_get_hyp_typ gl id)
  then
    simplest_elim (mkVar id) gl
  else
    errorlabstrm "Equality.gen_absurdity" 
      (str "Not the negation of an equality.")

(* Precondition: eq is leibniz equality
 
   returns ((eq_elim t t1 P i t2), absurd_term)
   where  P=[e:t]discriminator 
          absurd_term=False
*)

let discrimination_pf e (t,t1,t2) discriminator lbeq =
  let i           = build_coq_I () in
  let absurd_term = build_coq_False () in
  let eq_elim     = lbeq.ind in
  (applist (eq_elim, [t;t1;mkNamedLambda e t discriminator;i;t2]), absurd_term)

exception NotDiscriminable

let eq_baseid = id_of_string "e"

let apply_on_clause (f,t) clause =
  let sigma =  clause.evd in
  let f_clause = mk_clenv_from_env clause.env sigma None (f,t) in
  let argmv = 
    (match kind_of_term (last_arg f_clause.templval.Evd.rebus) with
     | Meta mv -> mv
     | _  -> errorlabstrm "" (str "Ill-formed clause applicator.")) in
  clenv_fchain argmv f_clause clause

let discr_positions env sigma (lbeq,eqn,(t,t1,t2)) eq_clause cpath dirn sort =
  let e = next_ident_away eq_baseid (ids_of_context env) in
  let e_env = push_named (e,None,t) env in
  let discriminator =
    build_discriminator sigma e_env dirn (mkVar e) sort cpath in
  let (pf, absurd_term) = discrimination_pf e (t,t1,t2) discriminator lbeq in
  let pf_ty = mkArrow eqn absurd_term in
  let absurd_clause = apply_on_clause (pf,pf_ty) eq_clause in
  let pf = clenv_value_cast_meta absurd_clause in
  tclTHENS (cut_intro absurd_term)
    [onLastHypId gen_absurdity; refine pf]

let discrEq (lbeq,_,(t,t1,t2) as u) eq_clause gls =
  let sigma = eq_clause.evd in
  let env = pf_env gls in
  match find_positions env sigma t1 t2 with
    | Inr _ ->
	errorlabstrm "discr" (str"Not a discriminable equality.")
    | Inl (cpath, (_,dirn), _) ->
	let sort = pf_apply get_type_of gls (pf_concl gls) in 
	discr_positions env sigma u eq_clause cpath dirn sort gls

let onEquality with_evars tac (c,lbindc) gls =
  let t = pf_type_of gls c in
  let t' = try snd (pf_reduce_to_quantified_ind gls t) with UserError _ -> t in
  let eq_clause = make_clenv_binding gls (c,t') lbindc in
  let eq_clause' = clenv_pose_dependent_evars with_evars eq_clause in
  let eqn = clenv_type eq_clause' in
  let eq,eq_args = find_this_eq_data_decompose gls eqn in
  tclTHEN
    (Refiner.tclEVARS eq_clause'.evd) 
    (tac (eq,eqn,eq_args) eq_clause') gls

let onNegatedEquality with_evars tac gls =
  let ccl = pf_concl gls in
  match kind_of_term (hnf_constr (pf_env gls) (project gls) ccl) with
  | Prod (_,t,u) when is_empty_type u ->
      tclTHEN introf
        (onLastHypId (fun id -> 
          onEquality with_evars tac (mkVar id,NoBindings))) gls
  | _ -> 
      errorlabstrm "" (str "Not a negated primitive equality.")

let discrSimpleClause with_evars = function
  | None -> onNegatedEquality with_evars discrEq
  | Some id -> onEquality with_evars discrEq (mkVar id,NoBindings)

let discr with_evars = onEquality with_evars discrEq

let discrClause with_evars = onClause (discrSimpleClause with_evars)

let discrEverywhere with_evars = 
(*
  tclORELSE
*)
    (if !discr_do_intro then
      (tclTHEN
	(tclREPEAT introf) 
	(Tacticals.tryAllHyps
          (fun id -> tclCOMPLETE (discr with_evars (mkVar id,NoBindings)))))
     else (* <= 8.2 compat *)
       Tacticals.tryAllHypsAndConcl (discrSimpleClause with_evars))
(*    (fun gls -> 
       errorlabstrm "DiscrEverywhere" (str"No discriminable equalities."))
*)
let discr_tac with_evars = function
  | None -> discrEverywhere with_evars
  | Some c -> onInductionArg (discr with_evars) c

let discrConcl gls  = discrClause false onConcl gls
let discrHyp id gls = discrClause false (onHyp id) gls

(* returns the sigma type (sigS, sigT) with the respective
    constructor depending on the sort *)
(* J.F.: correction du bug #1167 en accord avec Hugo. *) 
   
let find_sigma_data s = build_sigma_type ()

(* [make_tuple env sigma (rterm,rty) lind] assumes [lind] is the lesser
   index bound in [rty]

   Then we build the term

     [(existT A P (mkRel lind) rterm)] of type [(sigS A P)]

   where [A] is the type of [mkRel lind] and [P] is [\na:A.rty{1/lind}]
 *)

let make_tuple env sigma (rterm,rty) lind =
  assert (dependent (mkRel lind) rty);
  let {intro = exist_term; typ = sig_term} =
    find_sigma_data (get_sort_of env sigma rty) in
  let a = type_of env sigma (mkRel lind) in
  let (na,_,_) = lookup_rel lind env in
  (* We move [lind] to [1] and lift other rels > [lind] by 1 *)
  let rty = lift (1-lind) (liftn lind (lind+1) rty) in
  (* Now [lind] is [mkRel 1] and we abstract on (na:a) *)
  let p = mkLambda (na, a, rty) in
  (applist(exist_term,[a;p;(mkRel lind);rterm]),
   applist(sig_term,[a;p]))

(* check that the free-references of the type of [c] are contained in
   the free-references of the normal-form of that type. Strictly
   computing the exact set of free rels would require full
   normalization but this is not reasonable (e.g. in presence of
   records that contains proofs). We restrict ourself to a "simpl"
   normalization *)

let minimal_free_rels env sigma (c,cty) =
  let cty_rels = free_rels cty in
  let cty' = simpl env sigma cty in
  let rels' = free_rels cty' in
  if Intset.subset cty_rels rels' then
    (cty,cty_rels)
  else
    (cty',rels')

(* [sig_clausal_form siglen ty]
    
   Will explode [siglen] [sigS,sigT ]'s on [ty] (depending on the 
   type of ty), and return:

   (1) a pattern, with meta-variables in it for various arguments,
       which, when the metavariables are replaced with appropriate
       terms, will have type [ty]

   (2) an integer, which is the last argument - the one which we just
       returned.

   (3) a pattern, for the type of that last meta

   (4) a typing for each patvar

   WARNING: No checking is done to make sure that the 
            sigS(or sigT)'s are actually there.
          - Only homogenious pairs are built i.e. pairs where all the 
   dependencies are of the same sort

   [sig_clausal_form] proceed as follows: the default tuple is
   constructed by taking the tuple-type, exploding the first [tuplen]
   [sigS]'s, and replacing at each step the binder in the
   right-hand-type by a fresh metavariable. In addition, on the way
   back out, we will construct the pattern for the tuple which uses
   these meta-vars.

   This gives us a pattern, which we use to match against the type of
   [dflt]; if that fails, then against the S(TRONG)NF of that type.  If
   both fail, then we just cannot construct our tuple.  If one of
   those succeed, then we can construct our value easily - we just use
   the tuple-pattern.

 *)

let sig_clausal_form env sigma sort_of_ty siglen ty dflt =
  let { intro = exist_term } = find_sigma_data sort_of_ty in 
  let evdref = ref (Evd.create_goal_evar_defs sigma) in
  let rec sigrec_clausal_form siglen p_i =
    if siglen = 0 then
      (* is the default value typable with the expected type *)
      let dflt_typ = type_of env sigma dflt in
      if Evarconv.e_cumul env evdref dflt_typ p_i then
	(* the_conv_x had a side-effect on evdref *)
	dflt
      else
	error "Cannot solve an unification problem."
    else
      let (a,p_i_minus_1) = match whd_beta_stack !evdref p_i with
	| (_sigS,[a;p]) -> (a,p)
 	| _ -> anomaly "sig_clausal_form: should be a sigma type" in
      let ev = Evarutil.e_new_evar evdref env a in
      let rty = beta_applist(p_i_minus_1,[ev]) in
      let tuple_tail = sigrec_clausal_form (siglen-1) rty in
      match
	Evd.existential_opt_value !evdref 
	(destEvar ev)
      with
	| Some w -> applist(exist_term,[a;p_i_minus_1;w;tuple_tail])
	| None -> anomaly "Not enough components to build the dependent tuple"
  in
  let scf = sigrec_clausal_form siglen ty in
  Evarutil.nf_evar !evdref scf

(* The problem is to build a destructor (a generalization of the
   predecessor) which, when applied to a term made of constructors
   (say [Ci(e1,Cj(e2,Ck(...,term,...),...),...)]), returns a given
   subterm of the term (say [term]).

   Let [typ] be the type of [term]. If [term] has no dependencies in
   the [e1], [e2], etc, then all is simple. If not, then we need to
   encapsulated the dependencies into a dependent tuple in such a way
   that the destructor has not a dependent type and rewriting can then
   be applied. The destructor has the form

   [e]Cases e of
      | ...
      | Ci (x1,x2,...) =>
          Cases x2 of
          | ...
          | Cj (y1,y2,...) =>
              Cases y2 of
              | ...
              | Ck (...,z,...) => z
              | ... end
          | ... end
      | ... end

   and the dependencies is expressed by the fact that [z] has a type
   dependent in the x1, y1, ...

   Assume [z] is typed as follows: env |- z:zty

   If [zty] has no dependencies, this is simple. Otherwise, assume
   [zty] has free (de Bruijn) variables in,...i1 then the role of
   [make_iterated_tuple sigma env (term,typ) (z,zty)] is to build the
   tuple

   [existT [xn]Pn Rel(in) .. (existT [x2]P2 Rel(i2) (existT [x1]P1 Rel(i1) z))]

   where P1 is zty[i1/x1], P2 is {x1 | P1[i2/x2]} etc.

   To do this, we find the free (relative) references of the strong NF
   of [z]'s type, gather them together in left-to-right order
   (i.e. highest-numbered is farthest-left), and construct a big
   iterated pair out of it. This only works when the references are
   all themselves to members of [Set]s, because we use [sigS] to
   construct the tuple.

   Suppose now that our constructed tuple is of length [tuplen]. We
   need also to construct a default value for the other branches of
   the destructor. As default value, we take a tuple of the form

    [existT [xn]Pn ?n (... existT [x2]P2 ?2 (existT [x1]P1 ?1 term))]

   but for this we have to solve the following unification problem:

     typ = zty[i1/?1;...;in/?n]

   This is done by [sig_clausal_form].
 *)

let make_iterated_tuple env sigma dflt (z,zty) =
  let (zty,rels) = minimal_free_rels env sigma (z,zty) in
  let sort_of_zty = get_sort_of env sigma zty in
  let sorted_rels = Sort.list (<) (Intset.elements rels) in
  let (tuple,tuplety) =
    List.fold_left (make_tuple env sigma) (z,zty) sorted_rels 
  in
  assert (closed0 tuplety);
  let n = List.length sorted_rels in
  let dfltval = sig_clausal_form env sigma sort_of_zty n tuplety dflt in
  (tuple,tuplety,dfltval)

let rec build_injrec sigma env dflt c = function
  | [] -> make_iterated_tuple env sigma dflt (c,type_of env sigma c)
  | ((sp,cnum),argnum)::l ->
    try
      let (cnum_nlams,cnum_env,kont) = descend_then sigma env c cnum in
      let newc = mkRel(cnum_nlams-argnum) in
      let (subval,tuplety,dfltval) = build_injrec sigma cnum_env dflt newc l in
      (kont subval (dfltval,tuplety),
      tuplety,dfltval)
    with
	UserError _ -> failwith "caught"

let build_injector sigma env dflt c cpath =
  let (injcode,resty,_) = build_injrec sigma env dflt c cpath in
  (injcode,resty)

(*
let try_delta_expand env sigma t =
  let whdt = whd_betadeltaiota env sigma t  in 
  let rec hd_rec c  =
    match kind_of_term c with
      | Construct _ -> whdt
      | App (f,_)  -> hd_rec f
      | Cast (c,_,_) -> hd_rec c
      | _  -> t
  in 
  hd_rec whdt 
*)

(* Given t1=t2 Inj calculates the whd normal forms of t1 and t2 and it 
   expands then only when the whdnf has a constructor of an inductive type
   in hd position, otherwise delta expansion is not done *)

let simplify_args env sigma t = 
  (* Quick hack to reduce in arguments of eq only *)
  match decompose_app t with
    | eq, [t;c1;c2] -> applist (eq,[t;nf env sigma c1;nf env sigma c2])
    | eq, [t1;c1;t2;c2] -> applist (eq,[t1;nf env sigma c1;t2;nf env sigma c2])
    | _ -> t

let inject_at_positions env sigma (eq,_,(t,t1,t2)) eq_clause posns =
  let e = next_ident_away eq_baseid (ids_of_context env) in
  let e_env = push_named (e,None,t) env in
  let injectors =
    map_succeed
      (fun (cpath,t1',t2') ->
        (* arbitrarily take t1' as the injector default value *)
	let (injbody,resty) = build_injector sigma e_env t1' (mkVar e) cpath in
	let injfun = mkNamedLambda e t injbody in
	let pf = applist(eq.congr,[t;resty;injfun;t1;t2]) in
	let pf_typ = get_type_of env sigma pf in
	let inj_clause = apply_on_clause (pf,pf_typ) eq_clause in
        let pf = clenv_value_cast_meta inj_clause in
	let ty = simplify_args env sigma (clenv_type inj_clause) in
	(pf,ty))
      posns in
  if injectors = [] then
    errorlabstrm "Equality.inj" (str "Failed to decompose the equality.");
  tclMAP
    (fun (pf,ty) -> tclTHENS (cut ty) [tclIDTAC; refine pf])
    injectors

exception Not_dep_pair


let injEq ipats (eq,_,(t,t1,t2) as u) eq_clause =
  let sigma = eq_clause.evd in
  let env = eq_clause.env in
  match find_positions env sigma t1 t2 with
    | Inl _ ->
	errorlabstrm "Inj"
	  (str"Not a projectable equality but a discriminable one.")
    | Inr [] ->
	errorlabstrm "Equality.inj" 
	   (str"Nothing to do, it is an equality between convertible terms.")
    | Inr posns ->
(* Est-ce utile à partir du moment où les arguments projetés subissent "nf" ?
	let t1 = try_delta_expand env sigma t1 in
	let t2 = try_delta_expand env sigma t2 in
*)
        try (
(* fetch the informations of the  pair *)
        let ceq = constr_of_global Coqlib.glob_eq in
        let sigTconstr () = (Coqlib.build_sigma_type()).Coqlib.typ in
        let eqTypeDest = fst (destApp t) in 
        let _,ar1 = destApp t1 and
            _,ar2 = destApp t2 in
        let ind = destInd ar1.(0) in
        let inj2 = Coqlib.coq_constant "inj_pair2_eq_dec is missing"
            ["Logic";"Eqdep_dec"] "inj_pair2_eq_dec" in
(* check whether the equality deals with dep pairs or not *)
(* if yes, check if the user has declared the dec principle *)
(* and compare the fst arguments of the dep pair *)
        let new_eq_args = [|type_of env sigma (ar1.(3));ar1.(3);ar2.(3)|] in
        if ( (eqTypeDest = sigTconstr()) &&
             (Ind_tables.check_dec_proof ind=true) &&
             (is_conv env sigma (ar1.(2)) (ar2.(2)) = true))
              then ( 
(* Require Import Eqdec_dec copied from vernac_require in vernacentries.ml*)
              let qidl = qualid_of_reference 
                (Ident (dummy_loc,id_of_string "Eqdep_dec")) in
              Library.require_library [qidl] (Some false); 
(* cut with the good equality and prove the requested goal *)
              tclTHENS (cut (mkApp (ceq,new_eq_args)) )
               [tclIDTAC; tclTHEN (apply (
                  mkApp(inj2,
                        [|ar1.(0);Ind_tables.find_eq_dec_proof ind;
                          ar1.(1);ar1.(2);ar1.(3);ar2.(3)|])
                  )) (Auto.trivial [] [])
                ]
(* not a dep eq or no decidable type found *)
            ) else (raise Not_dep_pair) 
        ) with _ ->
	tclTHEN
	  (inject_at_positions env sigma u eq_clause posns)
	  (intros_pattern no_move ipats)

let inj ipats with_evars = onEquality with_evars (injEq ipats)

let injClause ipats with_evars = function
  | None -> onNegatedEquality with_evars (injEq ipats)
  | Some c -> onInductionArg (inj ipats with_evars) c

let injConcl gls  = injClause [] false None gls
let injHyp id gls = injClause [] false (Some (ElimOnIdent (dummy_loc,id))) gls

let decompEqThen ntac (lbeq,_,(t,t1,t2) as u) clause gls =
  let sort = pf_apply get_type_of gls (pf_concl gls) in 
  let sigma =  clause.evd in
  let env = pf_env gls in 
  match find_positions env sigma t1 t2 with
    | Inl (cpath, (_,dirn), _) ->
	discr_positions env sigma u clause cpath dirn sort gls
    | Inr [] -> (* Change: do not fail, simplify clear this trivial hyp *)
        ntac 0 gls
    | Inr posns ->
	tclTHEN
	  (inject_at_positions env sigma u clause (List.rev posns))
	  (ntac (List.length posns))
	  gls

let dEqThen with_evars ntac = function
  | None -> onNegatedEquality with_evars (decompEqThen ntac)
  | Some c -> onInductionArg (onEquality with_evars (decompEqThen ntac)) c

let dEq with_evars = dEqThen with_evars (fun x -> tclIDTAC)

let swap_equality_args = function
  | MonomorphicLeibnizEq (e1,e2) -> [e2;e1]
  | PolymorphicLeibnizEq (t,e1,e2) -> [t;e2;e1]
  | HeterogenousEq (t1,e1,t2,e2) -> [t2;e2;t1;e1]

let swap_equands gls eqn =
  let (lbeq,eq_args) = find_eq_data eqn in 
  applist(lbeq.eq,swap_equality_args eq_args)

let swapEquandsInConcl gls =
  let (lbeq,eq_args) = find_eq_data (pf_concl gls) in
  let sym_equal = lbeq.sym in
  refine
    (applist(sym_equal,(swap_equality_args eq_args@[Evarutil.mk_new_meta()])))
    gls

(* Refine from [|- P e2] to [|- P e1] and [|- e1=e2:>t] (body is P (Rel 1)) *)

let bareRevSubstInConcl lbeq body (t,e1,e2) gls =
  (* find substitution scheme *)
  let eq_elim = find_elim lbeq.eq false None gls in
  (* build substitution predicate *)
  let p = lambda_create (pf_env gls) (t,body) in
  (* apply substitution scheme *)
  refine (applist(eq_elim,[t;e1;p;Evarutil.mk_new_meta();
                           e2;Evarutil.mk_new_meta()])) gls

(* [subst_tuple_term dep_pair B]

   Given that dep_pair looks like:

   (existT e1 (existT e2 ... (existT en en+1) ... ))

   and B might contain instances of the ei, we will return the term:

   ([x1:ty(e1)]...[xn:ty(en)]B
    (projS1 (mkRel 1))
    (projS1 (projS2 (mkRel 1)))
    ... etc ...)

   That is, we will abstract out the terms e1...en+1 as usual, but
   will then produce a term in which the abstraction is on a single
   term - the debruijn index [mkRel 1], which will be of the same type
   as dep_pair.

   ALGORITHM for abstraction:

   We have a list of terms, [e1]...[en+1], which we want to abstract
   out of [B].  For each term [ei], going backwards from [n+1], we
   just do a [subst_term], and then do a lambda-abstraction to the
   type of the [ei].

 *)

let decomp_tuple_term env c t = 
  let rec decomprec inner_code ex exty =
    try
      let {proj1=p1; proj2=p2},(a,p,car,cdr) = find_sigma_data_decompose ex in
      let car_code = applist (p1,[a;p;inner_code])
      and cdr_code = applist (p2,[a;p;inner_code]) in
      let cdrtyp = beta_applist (p,[car]) in
      ((car,a),car_code)::(decomprec cdr_code cdr cdrtyp)
    with PatternMatchingFailure ->
      [((ex,exty),inner_code)]
  in
  List.split (decomprec (mkRel 1) c t)

let subst_tuple_term env sigma dep_pair b =
  let typ = get_type_of env sigma dep_pair in
  let e_list,proj_list = decomp_tuple_term env dep_pair typ in
  let abst_B =
    List.fold_right
      (fun (e,t) body -> lambda_create env (t,subst_term e body)) e_list b in
  beta_applist(abst_B,proj_list)

(* Like "replace" but decompose dependent equalities *)

exception NothingToRewrite

let cutSubstInConcl_RL eqn gls =
  let (lbeq,(t,e1,e2 as eq)) = find_eq_data_decompose gls eqn in
  let body = pf_apply subst_tuple_term gls e2 (pf_concl gls) in
  if not (dependent (mkRel 1) body) then raise NothingToRewrite;
  bareRevSubstInConcl lbeq body eq gls

(* |- (P e1)
     BY CutSubstInConcl_LR (eq T e1 e2)
     |- (P e2)
     |- (eq T e1 e2)
 *)
let cutSubstInConcl_LR eqn gls =
  (tclTHENS (cutSubstInConcl_RL (swap_equands gls eqn))
     ([tclIDTAC;
       swapEquandsInConcl])) gls

let cutSubstInConcl l2r =if l2r then cutSubstInConcl_LR else cutSubstInConcl_RL

let cutSubstInHyp_LR eqn id gls =
  let (lbeq,(t,e1,e2 as eq)) = find_eq_data_decompose gls eqn in 
  let body = pf_apply subst_tuple_term gls e1 (pf_get_hyp_typ gls id) in
  if not (dependent (mkRel 1) body) then raise NothingToRewrite;
  cut_replacing id (subst1 e2 body)
    (tclTHENFIRST (bareRevSubstInConcl lbeq body eq)) gls

let cutSubstInHyp_RL eqn id gls =
  (tclTHENS (cutSubstInHyp_LR (swap_equands gls eqn) id)
     ([tclIDTAC;
       swapEquandsInConcl])) gls

let cutSubstInHyp l2r = if l2r then cutSubstInHyp_LR else cutSubstInHyp_RL

let try_rewrite tac gls =
  try 
    tac gls
  with 
    | PatternMatchingFailure ->
	errorlabstrm "try_rewrite" (str "Not a primitive equality here.")
    | e when catchable_exception e -> 
	errorlabstrm "try_rewrite"
          (strbrk "Cannot find a well-typed generalization of the goal that makes the proof progress.")
    | NothingToRewrite ->
	errorlabstrm "try_rewrite"
          (strbrk "Nothing to rewrite.")

let cutSubstClause l2r eqn cls gls =
  match cls with
    | None ->    cutSubstInConcl l2r eqn gls
    | Some id -> cutSubstInHyp l2r eqn id gls

let cutRewriteClause l2r eqn cls = try_rewrite (cutSubstClause l2r eqn cls)
let cutRewriteInHyp l2r eqn id = cutRewriteClause l2r eqn (Some id)
let cutRewriteInConcl l2r eqn = cutRewriteClause l2r eqn None

let substClause l2r c cls gls =
  let eq = pf_apply get_type_of gls c in
  tclTHENS (cutSubstClause l2r eq cls) [tclIDTAC; exact_no_check c] gls

let rewriteClause l2r c cls = try_rewrite (substClause l2r c cls)
let rewriteInHyp l2r c id = rewriteClause l2r c (Some id)
let rewriteInConcl l2r c = rewriteClause l2r c None

(* Naming scheme for rewrite and cutrewrite tactics

      give equality        give proof of equality

    / cutSubstClause       substClause
raw | cutSubstInHyp        substInHyp
    \ cutSubstInConcl      substInConcl

    / cutRewriteClause     rewriteClause
user| cutRewriteInHyp      rewriteInHyp
    \ cutRewriteInConcl    rewriteInConcl

raw = raise typing error or PatternMatchingFailure
user = raise user error specific to rewrite
*)

(**********************************************************************)
(* Substitutions tactics (JCF) *)

let unfold_body x gl =
  let hyps = pf_hyps gl in
  let xval =
    match Sign.lookup_named x hyps with
        (_,Some xval,_) -> xval
      | _ -> errorlabstrm "unfold_body"
          (pr_id x ++ str" is not a defined hypothesis.") in
  let aft = afterHyp x gl in
  let hl = List.fold_right (fun (y,yval,_) cl -> (y,InHyp) :: cl) aft [] in
  let xvar = mkVar x in
  let rfun _ _ c = replace_term xvar xval c in
  tclTHENLIST
    [tclMAP (fun h -> reduct_in_hyp rfun h) hl;
     reduct_in_concl (rfun,DEFAULTcast)] gl



let restrict_to_eq_and_identity eq = (* compatibility *)
  if eq <> constr_of_global glob_eq && eq <> constr_of_global glob_identity then
    raise PatternMatchingFailure

exception FoundHyp of (identifier * constr * bool)

(* tests whether hyp [c] is [x = t] or [t = x], [x] not occuring in [t] *)
let is_eq_x gl x (id,_,c) =
  try
    let (_,lhs,rhs) = snd (find_eq_data_decompose gl c) in
    if (x = lhs) && not (occur_term x rhs) then raise (FoundHyp (id,rhs,true));
    if (x = rhs) && not (occur_term x lhs) then raise (FoundHyp (id,lhs,false))
  with PatternMatchingFailure ->
    ()

let subst_one x gl =
  let hyps = pf_hyps gl in
  let (_,xval,_) = pf_get_hyp gl x in
  (* If x has a body, simply replace x with body and clear x *)
  if xval <> None then tclTHEN (unfold_body x) (clear [x]) gl else
  (* x is a variable: *)
  let varx = mkVar x in
  (* Find a non-recursive definition for x *)
  let (hyp,rhs,dir) = 
    try
      let test hyp _ = is_eq_x gl varx hyp in
      Sign.fold_named_context test ~init:() hyps;
      errorlabstrm "Subst"
        (str "Cannot find any non-recursive equality over " ++ pr_id x ++
	 str".")
    with FoundHyp res -> res
  in
  (* The set of hypotheses using x *)
  let depdecls = 
    let test (id,_,c as dcl) = 
      if id <> hyp && occur_var_in_decl (pf_env gl) x dcl then dcl
      else failwith "caught" in
    List.rev (map_succeed test hyps) in
  let dephyps = List.map (fun (id,_,_) -> id) depdecls in
  (* Decides if x appears in conclusion *)
  let depconcl = occur_var (pf_env gl) x (pf_concl gl) in
  (* The set of non-defined hypothesis: they must be abstracted,
     rewritten and reintroduced *)
  let abshyps =
    map_succeed
      (fun (id,v,_) -> if v=None then mkVar id else failwith "caught")
      depdecls in
  (* a tactic that either introduce an abstracted and rewritten hyp,
     or introduce a definition where x was replaced *)
  let introtac = function
      (id,None,_) -> intro_using id
    | (id,Some hval,htyp) ->
        letin_tac None (Name id)
	  (replace_term varx rhs hval)
	  (Some (replace_term varx rhs htyp)) nowhere
  in
  let need_rewrite = dephyps <> [] || depconcl in
  tclTHENLIST 
    ((if need_rewrite then
      [generalize abshyps;
       (if dir then rewriteLR else rewriteRL) (mkVar hyp);
       thin dephyps;
       tclMAP introtac depdecls]
    else
      [thin dephyps;
       tclMAP introtac depdecls]) @
     [tclTRY (clear [x;hyp])]) gl

let subst ids = tclTHEN tclNORMEVAR (tclMAP subst_one ids)

let subst_all ?(strict=true) gl =
  let test (_,c) =
    try
      let lbeq,(_,x,y) = find_eq_data_decompose gl c in
      if strict then restrict_to_eq_and_identity lbeq.eq;
      (* J.F.: added to prevent failure on goal containing x=x as an hyp *)
      if eq_constr x y then failwith "caught";
      match kind_of_term x with Var x -> x | _ -> 
      match kind_of_term y with Var y -> y | _ -> failwith "caught"
    with PatternMatchingFailure -> failwith "caught"
  in
  let ids = map_succeed test (pf_hyps_types gl) in
  let ids = list_uniquize ids in
  subst ids gl


(* Rewrite the first assumption for which the condition faildir does not fail 
   and gives the direction of the rewrite *)

let cond_eq_term_left c t gl =
  try
    let (_,x,_) = snd (find_eq_data_decompose gl t) in
    if pf_conv_x gl c x then true else failwith "not convertible"
  with PatternMatchingFailure -> failwith "not an equality"

let cond_eq_term_right c t gl = 
  try
    let (_,_,x) = snd (find_eq_data_decompose gl t) in
    if pf_conv_x gl c x then false else failwith "not convertible"
  with PatternMatchingFailure -> failwith "not an equality"

let cond_eq_term c t gl = 
  try
    let (_,x,y) = snd (find_eq_data_decompose gl t) in
    if pf_conv_x gl c x then true 
    else if pf_conv_x gl c y then false
    else failwith "not convertible"
  with PatternMatchingFailure -> failwith "not an equality"

let rewrite_multi_assumption_cond cond_eq_term cl gl = 
  let rec arec = function 
    | [] -> error "No such assumption."
    | (id,_,t) ::rest -> 
	begin 
	  try 
	    let dir = cond_eq_term t gl in 
	    general_multi_rewrite dir false (inj_open (mkVar id),NoBindings) cl gl
	  with | Failure _ | UserError _ -> arec rest
	end
  in 
  arec (pf_hyps gl)

let replace_multi_term dir_opt c  = 
  let cond_eq_fun = 
    match dir_opt with 
      | None -> cond_eq_term c
      | Some true -> cond_eq_term_left c
      | Some false -> cond_eq_term_right c
  in 
  rewrite_multi_assumption_cond cond_eq_fun 

let _ = Tactics.register_general_multi_rewrite 
  (fun b evars t cls -> general_multi_rewrite b evars t cls)